

Robust control of mechanical systems under unilateral constraints with application to a biped robot

M.S. Oscar Montaño

Advisors: Dr. Yannick AOUSTIN, IRCCyN Dr. Yury ORLOV, CICESE

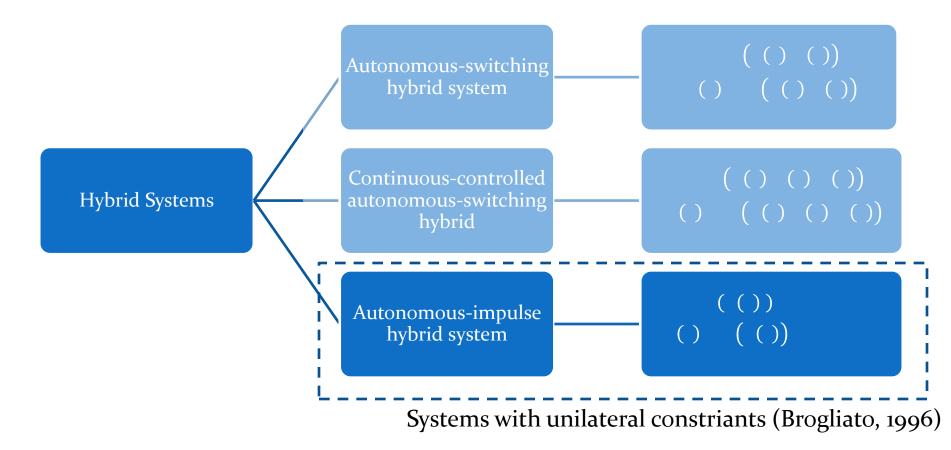
UNIVERSITÉ DE NANTES

Outline

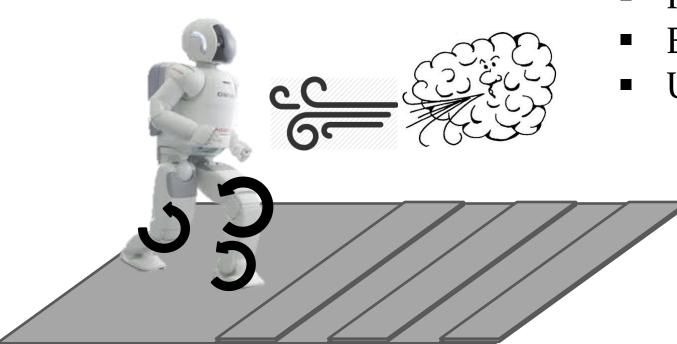
- Introduction
- Bipedal walking as a hybrid system
- Robust control synthesis
- Numerical results
- Future work

Introduction

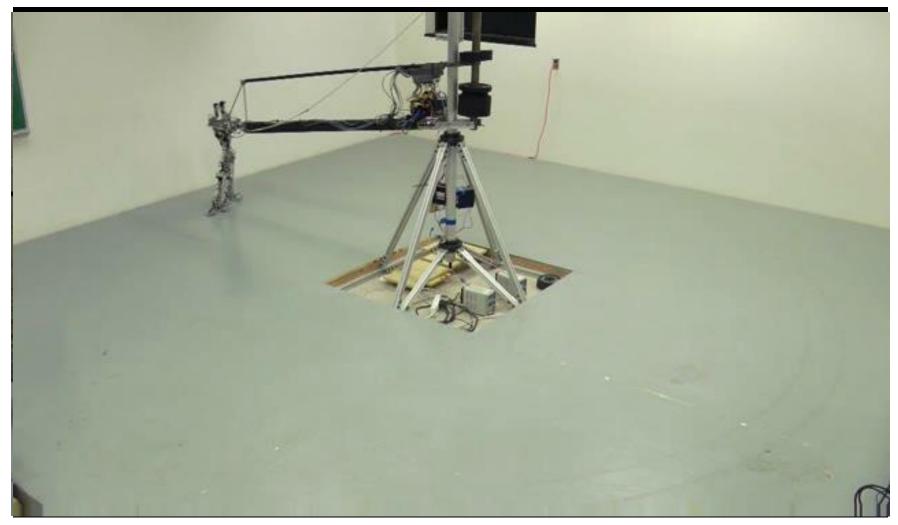
Hybrid systems



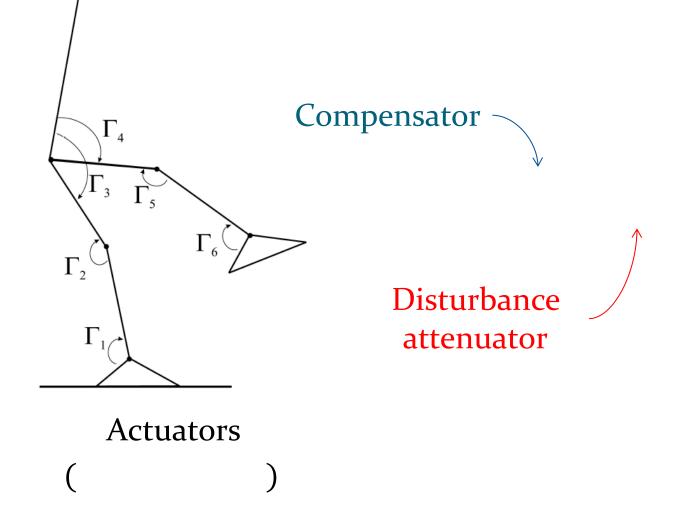
Disturbances



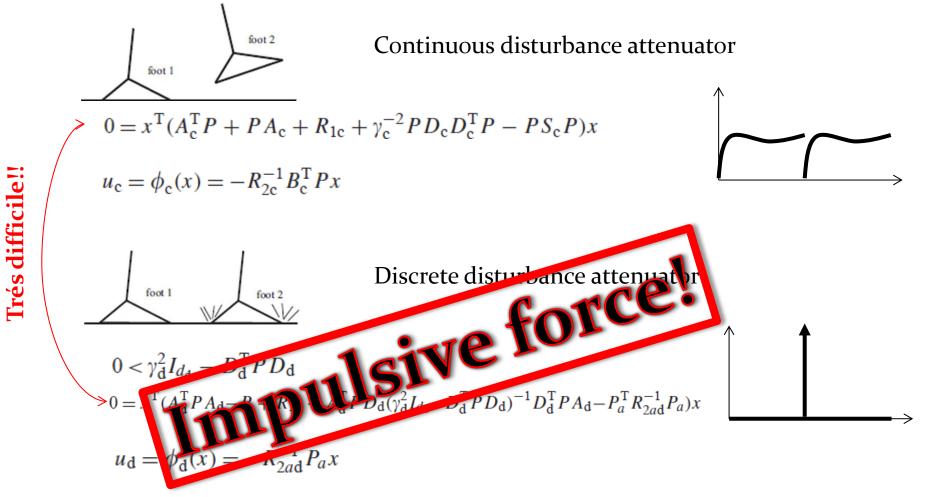
- Friction
 - External forces
 - Uneven ground



Disturbance attenuation



Disturbance attenuation



General Objective

- Address the problem of <u>disturbance attenuation for</u> <u>mechanical systems under unilateral constraints</u>
- Consider bounded exogeneous <u>disturbances on</u>
 - position measurements
 - <u>continuous phase</u>
 - <u>impact phase</u>.
- Avoid the use of impulsive inputs
- Consider that we may only have **position measurments**

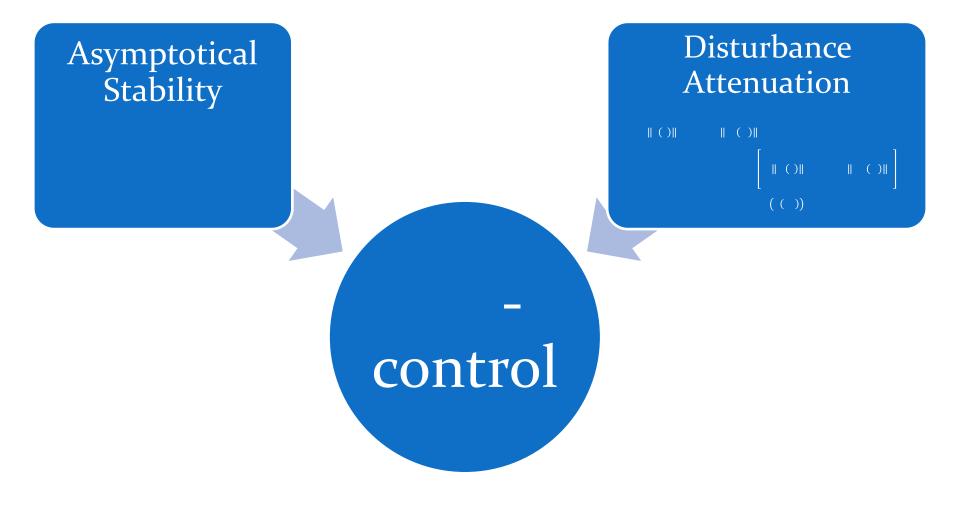
Bipedal walking as a hybrid system

Problem statement

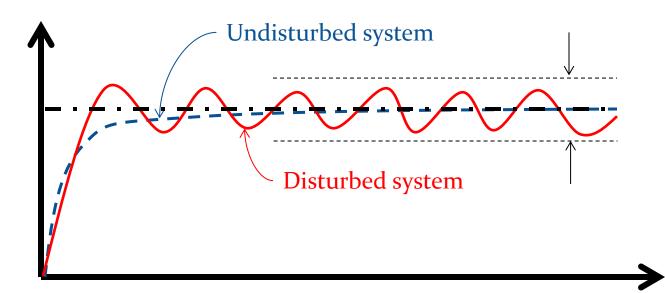
Consider the nonlinear mechanical system

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathbf{x}_2 \\ \dot{\mathbf{x}}_2 &= \Phi(\mathbf{x}_1, \mathbf{x}_2, t) + \Psi_1(\mathbf{x}_1, \mathbf{x}_2, t) \mathbf{w} + \Psi_2(\mathbf{x}_1, \mathbf{x}_2, t) \mathbf{u} & \text{Continuous} \\ & (1) & \text{dynamics} \\ & (1) & \text{generator} \\ & \mathbf{x}_1(\mathbf{x}_1, \mathbf{x}_2, t) + \mathbf{k}_{12}(\mathbf{x}_1, \mathbf{x}_2, t) \mathbf{u} & (2) \\ & \mathbf{y} &= \mathbf{h}_2(\mathbf{x}_1, \mathbf{x}_2, t) + \mathbf{k}_{21}(\mathbf{x}_1, \mathbf{x}_2, t) \mathbf{w} & (3) & \text{Measurements} \\ & \mathbf{x}_1(t_i^+) &= \mathbf{x}_1(t_i^-) \\ & \mathbf{x}_2(t_i^+) &= \mu_0(\mathbf{x}_1(t_i), \mathbf{x}_2(t_i^-), t_i) + \boldsymbol{\omega}(\mathbf{x}_1(t_i), \mathbf{x}_2(t_i^-), t_i) \mathbf{w}_i^d & \text{Discrete} \\ & & (4) \\ & & \mathbf{x}_i^d &= \mathbf{x}_2(t_i^+) & (5) & (1) \\ & & (1) & \text{dynamics} \\ &$$

-attenuator



Disturbance attenuation with



Local space-state solution

The subsequent local analysis involves the linear - control problem for the system within the impact free intervals ()

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{B}_{1}(t)\mathbf{w} + \mathbf{B}_{2}(t)\mathbf{u}, \qquad (20)$$
$$\mathbf{z} = \mathbf{C}_{1}(t)\mathbf{x} + \mathbf{D}_{12}(t)\mathbf{u}, \qquad (21)$$
$$\mathbf{y} = \mathbf{C}_{2}(t)\mathbf{x} + \mathbf{D}_{21}(t)\mathbf{w}, \qquad (22)$$

$$() - , () (), () (), () - , () - () () (), () - () () - () () () - () () - () () - ($$

Local space-state solution

The output feedback consist of:

Robust State Observer

And it is a local solution of the the nonlinear system (1)-(5)

-control problem for

Local space-state solution

() and () are bounded, symmetrical, positive definite solutions of the differential <u>Riccati</u> equation system

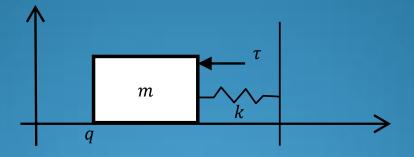
$$-\dot{\mathbf{P}}_{\varepsilon}(t) = \mathbf{P}_{\varepsilon}(t)\mathbf{A}(t) + \mathbf{A}^{\top}(t)\mathbf{P}_{\varepsilon}(t) + \mathbf{C}_{\mathbf{1}}^{\top}(t)\mathbf{C}_{\mathbf{1}}(t) + \mathbf{P}_{\varepsilon}(t)[\frac{1}{2}\mathbf{B}_{\mathbf{1}}\mathbf{B}_{\mathbf{1}}^{\top} - \mathbf{B}_{\mathbf{2}}\mathbf{B}_{\mathbf{2}}^{\top}](t)\mathbf{P}_{\varepsilon}(t) + \varepsilon\mathbf{I}$$

They are only dependent of the trajectory, so if it is known, and can be calculated <u>a priori</u>

$$\dot{\mathbf{Z}}_{\varepsilon}(t) = \mathbf{A}_{\varepsilon}(t)\mathbf{Z}_{\varepsilon}(t) + \mathbf{Z}_{\varepsilon}(t)\mathbf{A}_{\varepsilon}^{\top}(t) + \mathbf{B}_{1}(t)\mathbf{B}_{1}^{\top}(t) + \mathbf{Z}_{\varepsilon}(t)[\frac{1}{\gamma^{2}}\mathbf{P}_{\varepsilon}\mathbf{B}_{2}\mathbf{B}_{2}^{\top}\mathbf{P}_{\varepsilon} - \mathbf{C}_{2}^{\top}\mathbf{C}_{2}](t)\mathbf{Z}_{\varepsilon}(t) + \varepsilon\mathbf{I} with \mathbf{A}_{\varepsilon}(t) = \mathbf{A}(t) + \frac{1}{\gamma^{2}}\mathbf{B}_{1}(t)\mathbf{B}_{1}^{\top}(t)\mathbf{P}_{\varepsilon}(t)$$

Example

Tracking of a Mass-spring-damper-barrier system



Simulation results

• The simulation shown was performed using Matlab and the parameters from the table:

Param	Value	Param	Value
k	10 N/m	$ ho_v$	1
Ь	1 N/m/s	ε	0.01
m	$1 \ kg$	w_i^d	$0.2q_2 \ m/s$
e	0.5	w_1	$0.1q_2 + 0.1 \text{sign}(q_2) N$
ρ_p	1	w_2	$0.1\sin(1.5t) \ m$
$q(t_o)$	0.2 m	$\dot{q}(t_0)$	$0.8 \ m/s$
$\xi_1(t_o)$	0 m	$\xi_2(t_0)$	$0.8 \ m/s$

Simulation results

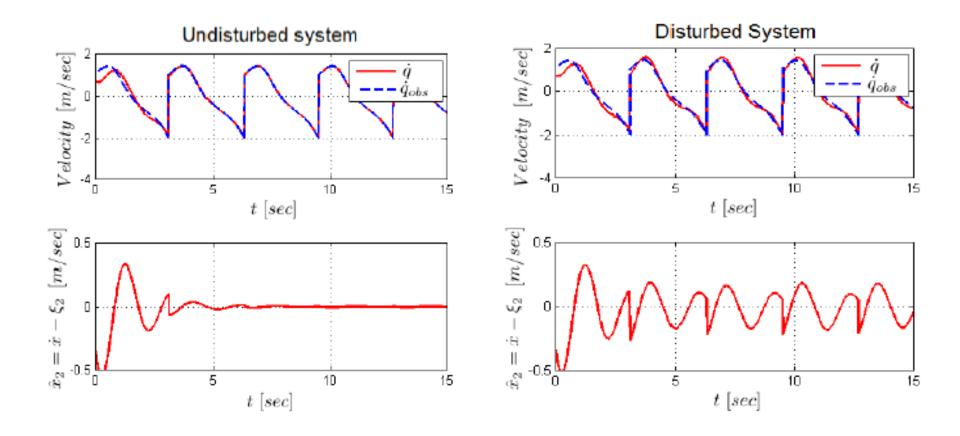
Undisturbed System

1.5 1.5 d [cm] q [cm] 0.8 0. 5 15 5 10 15 10 t [sec] t [sec] 0.5 0.5 ×1 = q1-q1d [cm] = q1-q1d [cm] -0. -0.5 10 5 10 15 t [sec] t [sec]

The system tracks the desired trajectory in a sound manner despite the disturbances affecting both the free-motion (coulomb friction) and transition phases (deviation from restitution coefficient), as well as disturbances in the position measurement, while asymptotically stabilizing the error for the undisturbed system.

Disturbed System

Behavior of the velocity filter



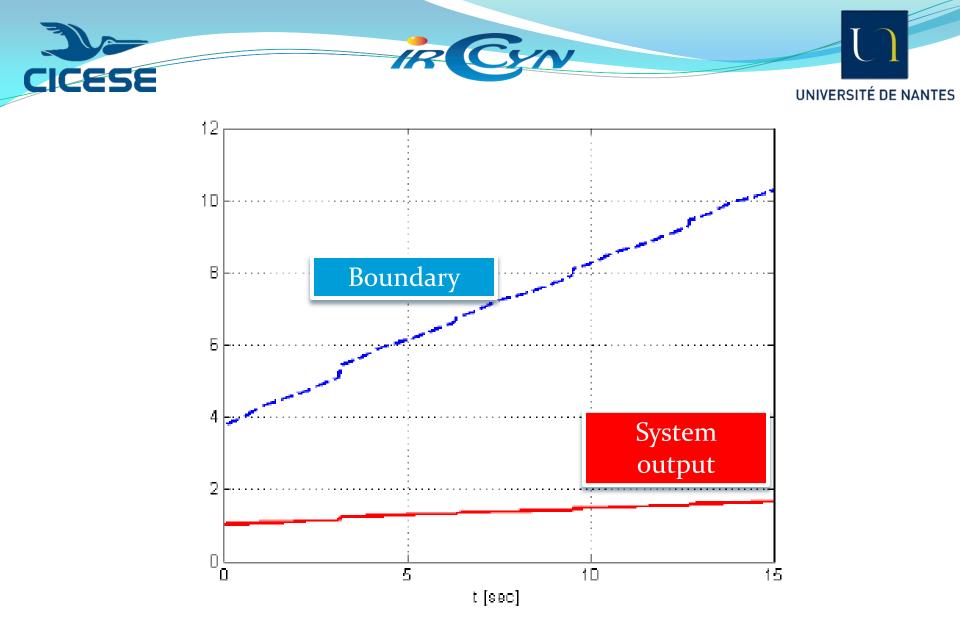
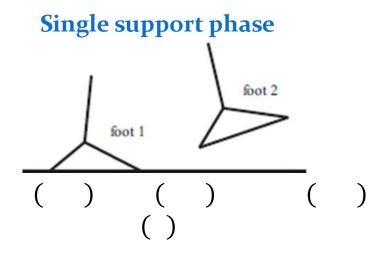


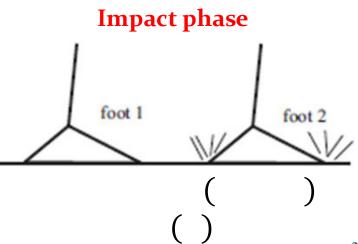
Fig. 3. \mathcal{L}_2 -gain behavior for $\gamma = 2$: $||z||_{L_2}^2 + ||z^d||_{l_2}^2$ (solid line) vs. $\gamma^2[||w||_{L_2}^2 + ||w_i^d||_{l_2}^2] + \sum_{k=0}^N \beta_k$ (dashed line).

Case Study

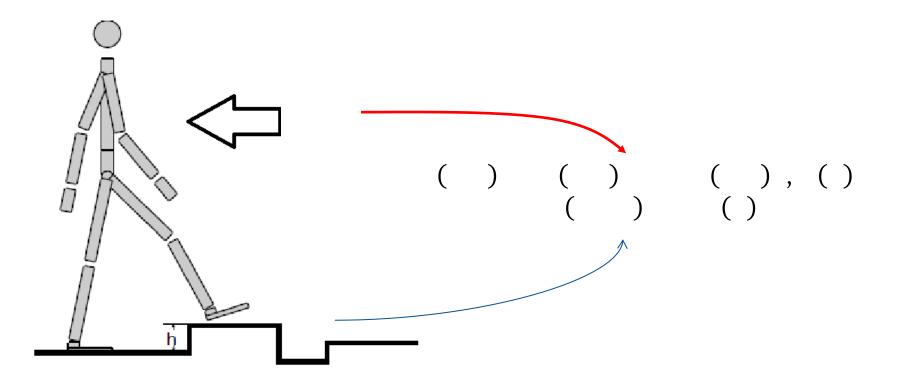
Periodic Tracking of biped with feet via position feedback

Biped's Hybrid Model

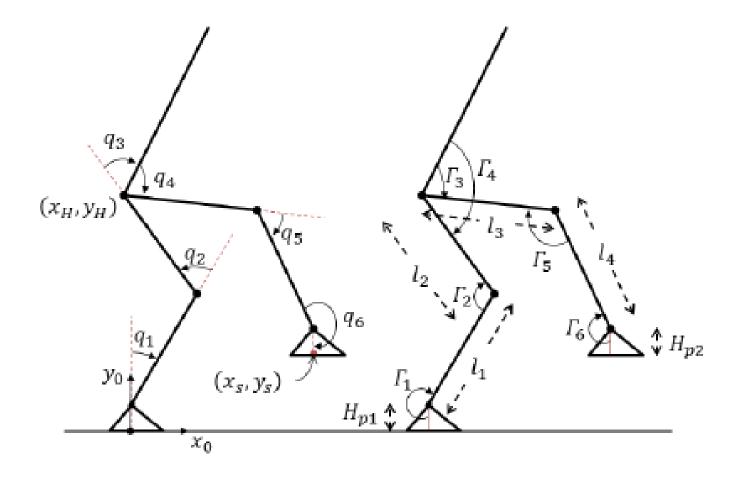




Disturbances in the model



Model of the biped robot



Assumptions

• Single support phase:

• Flat foot contact of the stance foot with the ground (i.e. there is no take off, no rotation, and no sliding during this phase)

Impact phase

• Flat foot contact of the swing foot with the ground, the double support phase is instantaneous and it can be modeled through passive impact equations

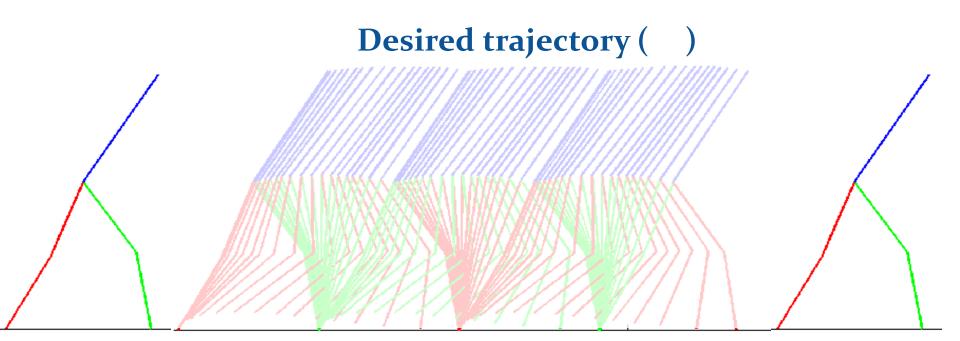
Model of the biped robot

• Thus, we have a model of the form Free-motion phase: () () () Transition phases: () () (())

() represents the height of the swing foot

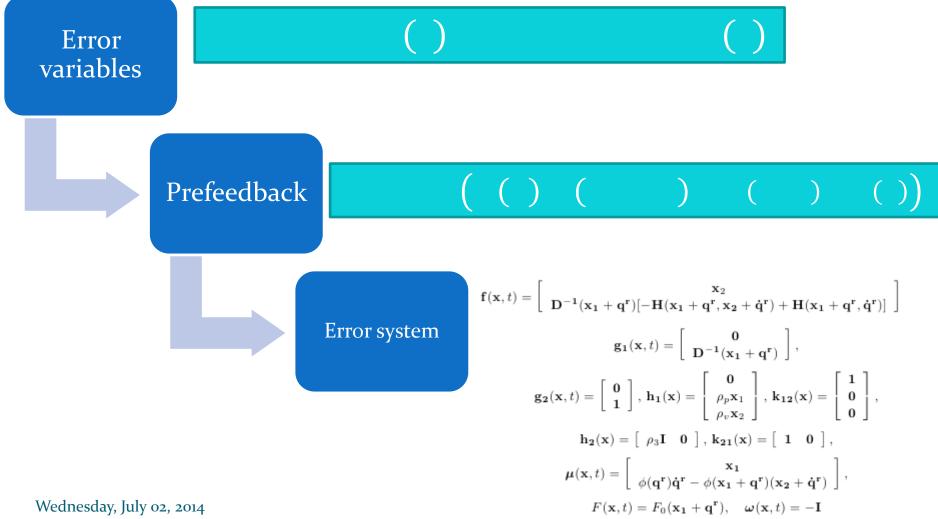
Robust control synthesis

Motion planning



The trajectory: Minimizes an energetic criteria Ensures cyclic walking

Methodology



Methodology

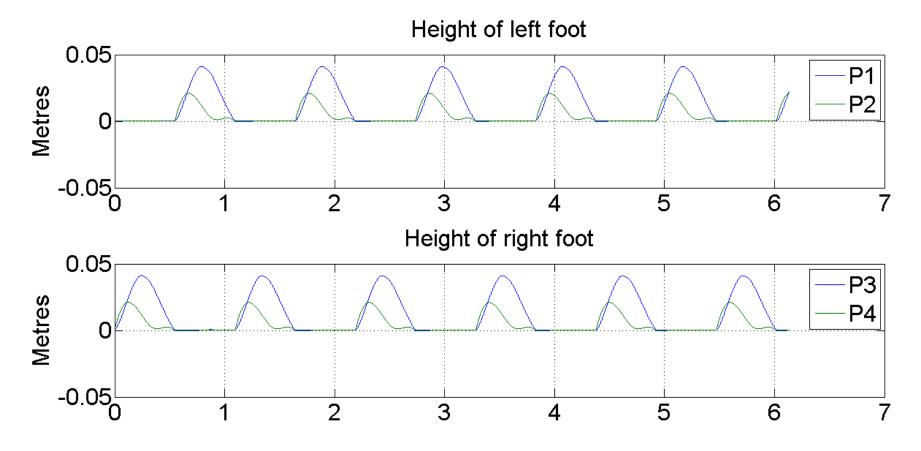
 $-\dot{\mathbf{P}}_{\varepsilon}(t) = \mathbf{P}_{\varepsilon}(t)\mathbf{A}(t) + \mathbf{A}^{\top}(t)\mathbf{P}_{\varepsilon}(t) + \mathbf{C_{1}}^{\top}(t)\mathbf{C_{1}}(t)$ + $\mathbf{P}_{\varepsilon}(t)[\frac{1}{2}\mathbf{B}_{1}\mathbf{B}_{1}^{\top} - \mathbf{B}_{2}\mathbf{B}_{2}^{\top}](t)\mathbf{P}_{\varepsilon}(t) + \varepsilon\mathbf{I}$ Differential Riccati $\dot{\mathbf{Z}}_{\varepsilon}(t) = \mathbf{A}_{\varepsilon}(t)\mathbf{Z}_{\varepsilon}(t) + \mathbf{Z}_{\varepsilon}(t)\mathbf{A}_{\varepsilon}^{\top}(t) + \mathbf{B}_{\mathbf{1}}(t)\mathbf{B}_{\mathbf{1}}^{\top}(t)$ Equations $+\mathbf{Z}_{\varepsilon}(t)[\frac{1}{\gamma^{2}}\mathbf{P}_{\varepsilon}\mathbf{B_{2}}\mathbf{B_{2}}^{\top}\mathbf{P}_{\varepsilon}-\mathbf{C_{2}}^{\top}\mathbf{C_{2}}](t)\mathbf{Z}_{\varepsilon}(t)+\varepsilon\mathbf{I}$ r () - () () () () ()() [()

Numerical results

Numerical Tests

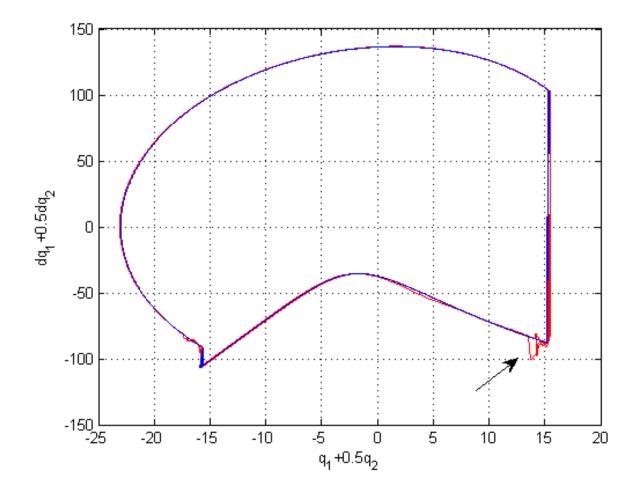
- The robustness of the tracking control is verified by introducing a disturbance force applied on the hip in the horizontal plane.
 - Such a force is used for the duration of 0.07 s to simulate a disturbance effect.
- The contact with the ground is stated as a linear complementary constraint problem and solved with a constrained optimization
- The measurements are disturbed with a constant

Numerical results

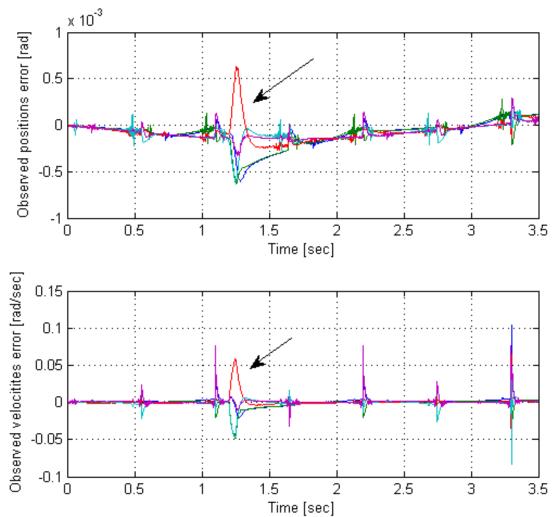


Feet heights in the walking gait

Numerical Results



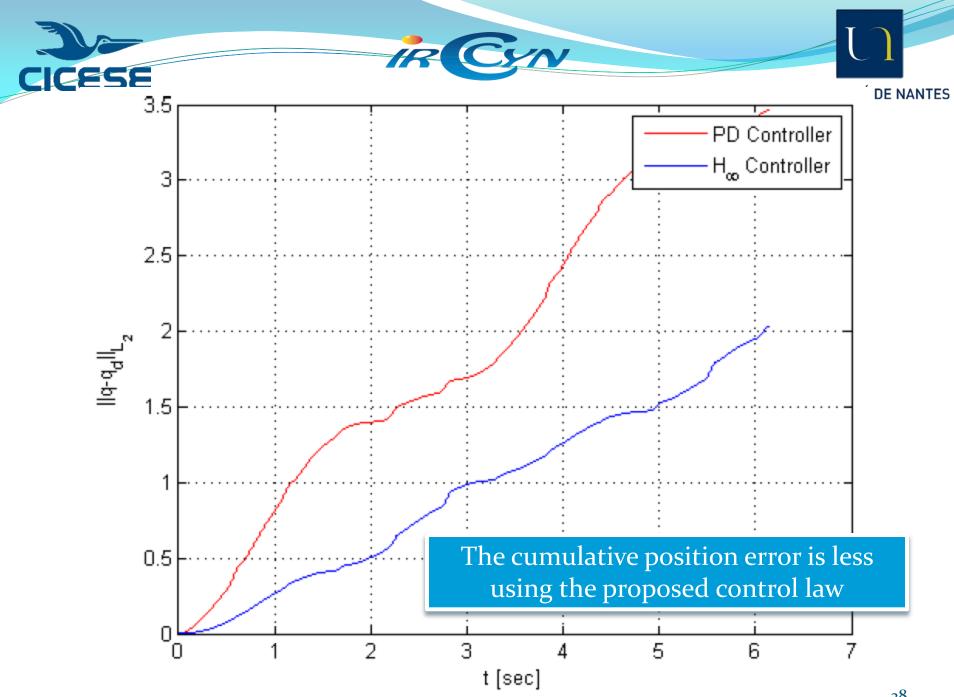
Numerical Results



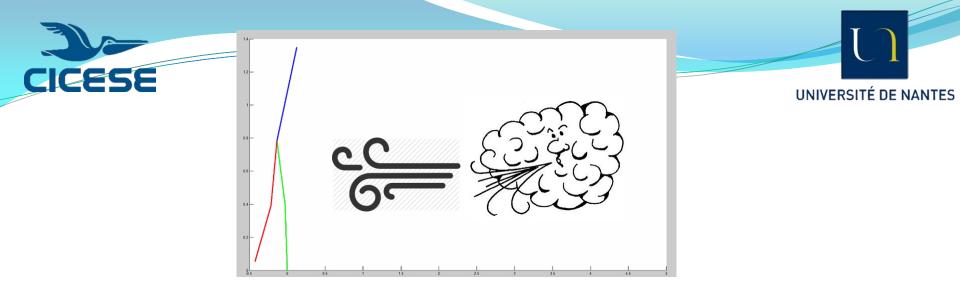
Comparisson against a PD controller

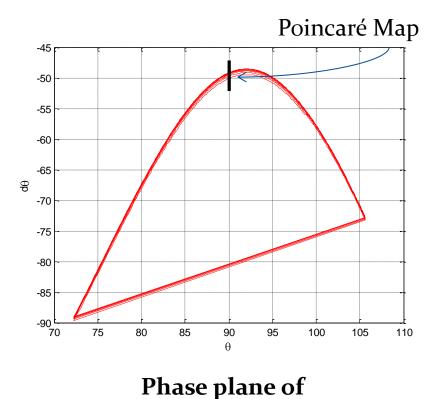
- A PD controller was designed to compare against our design
- The Parameters of the controller were selected solving a pair of time-independent Riccati equations, thus making a fair comparisson
- A persisten disturbance force of

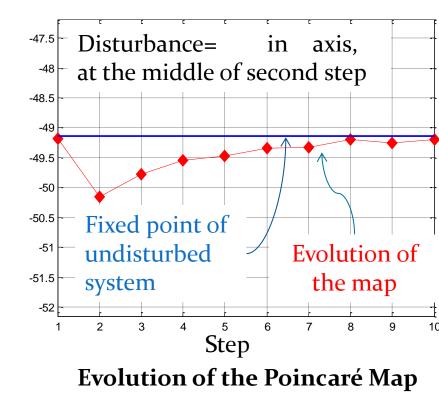
 () was applied to the hip of the biped



Underactuated Biped Results







Future work

Future work

- Extension of this results to the <u>3D</u> scenario,
 - implies more degrees of freedom, thus implying more difficulties to obtain a stable walking gait.