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Behavioural and Cognitive
Development in Human Infants
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* How do developmental structures form?
* How do developmental structures impact the acquisition of novel skills?
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Developmental robotics?



Families of
developmental
« forces »

Intrinsic motivation, active learning
« Autonomous collection of data

 Efficient learning

« Self-organization of developmental trajectories

Cognitive abstractions:

« Perceptual categories grounded in action

« Active goal babbling, macro-actions, macro-states
 Efficient learning in high-dimensions

Social learning, imitation

« Imitation of trajectories and goals

* Learning combinatorial motor primitives
« Optimal teaching

Body morphology and growth
Morphology

« Synergies

« Self-organization of movement structures

« Adaptive maturation driven by intrinsic motivation

« Self-organization of maturational schedule



B Development of sensorimotor skills

Relation (context, actions <-> effect)
and their sequencing/composition

Space of Controllers Task Space = Space of Effects

Reachable
Space of Effects

Parameterized by Parameterized by

91' c R" >‘j e R™
* Forward models: Regression algorithms

* Inverse models: (Stochastic) Optimization algorithms
« Sequencing/composition: RL and structure discovery alg.

High-dimensions How to achieve

Non-linear, redundant | “\autonomous learning?
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Limited time resources




Intrinsic motivation, curiosity and
active learning

Hull (1943), White (1959): Basic
forms of motivations (e.g.
motivation for food and water,
for sex, motivation for the
maintainance of physical
integrity, search for social
bonding) can not account for
the whole diversity of
spontaneous exploratory
behaviours of humans.

=> Intrinsic drive to reduce uncertainty, and to experiencing novelty, surprise,
cognitive dissonance, challenge, incongruences, ...

=» Optimal interest = optimal difficulty = neither trivial nor too difficult challenges
Berlyne (1960), White (1960) Csikszentmihalyi (1996)
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Information-seeking, curiosity, and
attention: computational and neural

mechanisms
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Intelligent animals devote much time and energy to
exploring and abtaining information, but the underlying
mechanisms are poory understood. We review recent
developments on this topic that have emerged from the
traditionally separate fields of machine learning, eye
movements in natural behavior, and studies of curiosity
in peychology and neurcscience. These studies show
that exploration mey be guided by a family of mecha-
nisms that renge from automatic bieses toward novelty
of surprise to systematic searches for learning progress
and information gain in curiosity-driven behavior. In
additien, eye movements reflect visual information
searching in multiple conditions and are amenable for
cellular-level investigations. This suggests that the oou-
lomoter system is an excellent model system for under-
standing information-sampling mechanisms.

Information-seeking in machine learning, psychology
and neuroscience

Fur better or for worse, during our limited existence on
earth, humans have altered the face of the world, We
tovented electrivity, submarines, and airplanes, and devel-
wped farming and medicine to an extent that has massively
changed our lives. There ts little doubt that thess extraor-
dinary advanees are made posatble by our cogrilive strue-
ture, particulady the alality to reason and build eavsal
mpdels of external eventa In addition, we would argue that
this extraordinary dynamism depends on our high degree
curicsity, the burning desire o know and wnderstand.
Many animals, especially humans, seem Lo constantly seek
knowledge and information in behaviors ranging from the
wery amall (sweh as looking at & new storefront) to the very
elaborate and sustained (gsuch as reading & novel or carry-
tng ool research) Morsover, especially in homans,
the search for information seems to be independent of a

Cornrspondieg awher: Gostlieh, J. (g3i4 18eplue o edul

foresseable prafit, as if learning were reinforeing in and of
itaell.

Deapite the importance of information-seeking for intel-
ligent behavier, cur understanding of its mechaniarms 18 tn
its infancy. In psychalogy, research on euwresily surged
during the 1960z and 1970s and subsequently waned [1]
and has shown a moderate revival in aearoscience in
recent yvears [23]. Our foeus here i on evaluating three
lines of investigation that are relevant to this question and
have remained largely separate: studies of active learning
and exploration n the machine learning and roboties
fields, studies of eye movements in natural behavior,
and studies of curipsity in pavehology and pewroscienos.
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Active learning, intrinsic motivation

‘ pregict : (S(t), o, ) > S(t+D)

‘@_ - (SYRGPRNN,..
L
o N To ~
. ° dS(t).p,)=|Xt+D)- St+D)
Intrinsic Motivation
Dovanand beline (002) de
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=>» Non-stationary function, difficult to model

=>» Algorithms for empirical evaluation of de/dt with
complex (S(t),p,) statistical regression

g;ﬂgﬁgﬁgﬁ rérllg%r)leman% 2004) => IAC (2004, 2007), R-IAC (2009), SAGG-RIAC (2010)

(Oudeyer, Kaplan, Hafner, 2007) McSAGG-RIAC (2011), SGIM (2011), Smoothed
(Baldassarre, 2011) Beta distribution (2011), SGIM-ACTS (2012)
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The Playground Experiments

(Oudeyer et al., IEEE Trans. EC 2007; Connection Science 2006)



Curiosity-driven active Goal Babbling

(Oudeyer and Kaplan, 2007; Baranes and Oudeyer, 2009, 2010, 2013;
see also Rolf and Steil, 2009, 2010, 2013)

Redundancy of
sensorimotor
spaces Space of Controllers Task Space = Space of Effects

Reachable J
S

(Context, Movement) Space of Effect

9
Effect




Curiosity-driven goal babbling

Active learning of omnidirectional locomotion Reaching Error
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=» Performance higher than more classical active learning algorithms in real sensorimotor

spaces (non-stationary, non homogeneous)
(Baranes and Oudeyer, IEEE TAMD 2009; Robotics and Autonomous Systems; 2013)




Curiosity-driven learning of
visual affordances

Learning to
recognize objects
based on
perceptuo-motor
affordances

Collaboration
with Univ. Paris
Vi

Icub awarded
through Robocub
Open Call

ANR MACSi

(Nguyen et al.; ICDL-Epirob 2013; Ivaldi et al., IEEE TAMD 2013)



Predictions and experiments about
monkey/human spontaneous exploration

e Collaboration with J. Gottlieb, Univ. Columbia, US
e Since jan 2013: Associated Team Inria-Columbia Neurocuriosity

TRACKING ATTENTION

Neuroscience of visual attention and
exploration in monkeys

Structure of intrinsically motivated
exploration of multiple sensorimotor
« games » in humans

= (Gottlieb, Oudeyer et al. (in press)
« Information seeking, curiosity and attention:
computational and neural mechanisms »

Trends in Cognitive Science)




Social learning, imitation




Hierarchical curiosity-driven learning

Automonous

Goal Interest Mapping

== Social Learning I
== |ntrinsic Motivation SR ] Goal-Directed
rlmitate Action Policy
A Optimisation

A

(Nguyen and Oudeyer, Palad. Behav. Rob., 2013; Autonomous Rob. 2013)



Learning to use a fishing rod

essential tool, isnt’it ?

(Nguyen, Oudeyer, Fudal, Béchu, 2010-13)



The role of body morphology



Morphology and self-organization of

biped locomotion
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Tad McGeer (McGeer, 1990), Nagoya Univ. (2005)




Morphological computation

Hon Toft
Shoulders/Z |
4

* Collaboration with
Labri/Univ. Bordeaux |

e Collaboration with J-R.
Cazalets, Integrative
Neuroscience Institute,

TEXY Bordeaux
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(Ceccato et Cazalets,
2009)

The Acroban humanoid (Ly, Lapeyre, Oudeyer, 2011, IRS)






Désimbriquer
corps, cerveau et environnement

Développement

Biais cognitifs Environnement




Plateformes « off-the-shelf »

Robots
"~ Industriels

=== Dangereux

* Rigide

* Non-reconfigurable

===+ Fixe au labo

___+ Cher

 Difficile a réparer soi-méme

Robots low-cost . :
Robots industriels souple

off-the-shelf
o . « Dangereux
* Peuprecis o « Non-reconfigurables
- Capacités motrices réduites *  Fixe au labo
* Rigide « Difficile a réparer soi-mé

 Difficile a réparer soi-méme « Cher




WARNING
HOT SURFACE

3D printing




Poppy : robot humanoide DIY open-source







(a) bended thigh (b) straight thigh






Coupe du monde




“ducation

Outil pédagogique
Design
Mécanigue
Informatique
Electronique

Projet de groupes

Formation a I'impression 3D

Hacker le robot (morphologie)

Hackathon a la cité des sciences (Paris)



POPPYPROJECT POPPY RESEARCH NEWS ABOUTUS

WWW.pOppYy-project.org

Open-source
hardware and
software

Papr ] u 1 i1 n Da n fl £ J 1M
Design by th at (Fran its deveiopment aims at p ding an .
affordable humanoid robot for 1 Archand egucation I Or a( a el I ll( S
Ou ' with Poppy focuses on the study of the morphology. the learning of biped

vomotion, and physical & social humanrobot interaction

v OPEN SOURCE and geeks

Both software and hardware are available under an open
source ficence for academics

v AFFORDABLE

The averall materials needed to build your own Poppy

ANE

robot cost around 7500€ (including motors. electronics and I itte r.
3D printed parts) W °

v OPTIMIZED FOR BIPED LOCOMOTION

L]
The morphological optimization & main . expressed on the @ p O p py p rO] e Ct

locomotive system (legs and trunks) to increase the robot

robustness, agility and stability during the walkking

v SOCIAL AND PHYSICAL HUMAN-ROBOT INTERACTION
Physical interaction with full body compliance and an
rticulated torso. Optionally, social interaction can be

wroved with cameras, micros and LCD Screen

v EASY TO REPAIR AND DUPLICATE
w only uses off-the-shelf components (motors and
is) and fimbs that can be printed with regular 3D




Poppy assembly



Rencontre robotique
artistique
autour du geste




