Simulating Multi-Robot Exploration Using ROS and MORSE

Zhi Yan, Luc Fabresse, Jannik Laval and Noury Bouraqadi firstname.lastname@mines-douai.fr

Institut Mines-Telecom, Mines Douai http://car.mines-douai.fr

CAR 2014, June 23, 2014

Multi-robot exploration Robotics simulation

Multi-robot exploration

Research background

- Exploring an unknown environment in cooperation
- Building a map of this environment

Application areas

- Search and rescue in earthquake
- Fire searching inside building
- Mineral exploration
- Mine clearance

Multi-robot exploration Robotics simulation

Multi-robot exploration

Research background

- Exploring an unknown environment in cooperation
- Building a map of this environment

Application areas

- Search and rescue in earthquake
- Fire searching inside building
- Mineral exploration
- Mine clearance

Question

Which coordination strategy?

Multi-robot exploration Robotics simulation

Multi-robot exploration

Research background

- Exploring an unknown environment in cooperation
- Building a map of this environment

Application areas

- Search and rescue in earthquake
- Fire searching inside building
- Mineral exploration
- Mine clearance

Question

Which coordination strategy?

Answer?

Need to compare!

Multi-robot exploration Robotics simulation

How to compare?

Problem

- Development and validation of coordination strategies with actual robots: long time!
- Debugging and testing: quite complex!

Multi-robot exploration Robotics simulation

How to compare?

Problem

- Development and validation of coordination strategies with actual robots: long time!
- Debugging and testing: quite complex!

Solution

- Simulation before deploying to actual robots!
- Which simulator?
 - BOSS: a discrete multi-roBOt Simulator in Smalltalk
 - Stage: a 2D multi-robot simulator

◆ BOSS DEMO WITH 5 ROBOTS ◆ STAGE DEMO WITH 4 ROBOTS

Multi-robot exploration Robotics simulation

Robotics simulation

Challenges

- Simulations need to be as realistic as possible
- Difference between simulated and real robots should be minimized

Multi-robot exploration Robotics simulation

Robotics simulation

Our goals

- Build a **realistic test bed** for evaluating different coordination algorithms in different conditions
- Develop **performance benchmarks** for quantitative analysing and comparing different algorithms

Multi-robot exploration Robotics simulation

Robotics simulation

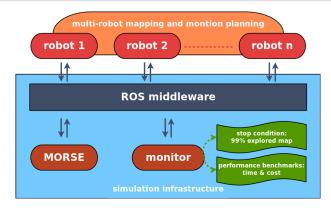
Our goals

- Build a **realistic test bed** for evaluating different coordination algorithms in different conditions
- Develop **performance benchmarks** for quantitative analysing and comparing different algorithms

Our propose

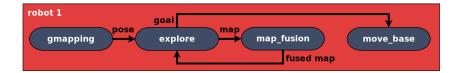
- MORSE: a 3D simulator with realistic physics engine
- ROS: a de facto standard middleware
- Cluster: a high performance distributed computing

System overview


System overview

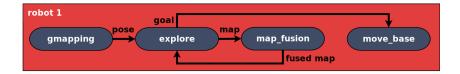
- Multi-robot mapping: robot exchanges the explored map with its teammates
- Multi-robot motion planning: robot moves towards the nearest frontier

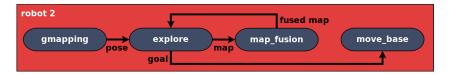
System overview


System overview

- Multi-robot mapping: robot exchanges the explored map with its teammates
- Multi-robot motion planning: robot moves towards the nearest frontier
- **Time metric**: total time required to complete an exploration mission
- Cost metric: sum of energy consumed by all robots in the team

Setup Results

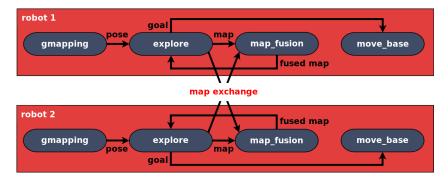

Robot setup



- gmapping: laser-based SLAM (Grisetti et al., 2007)
- explore: frontier-based exploration (Yamauchi, 1997)
- **map_fusion**: multiple maps merging (developed by our team)
- move_base: mobile robot navigation (using Dijkstra pathfinding algorithm)

Setup Results

Robot setup



- gmapping: laser-based SLAM (Grisetti et al., 2007)
- explore: frontier-based exploration (Yamauchi, 1997)
- map_fusion: multiple maps merging (developed by our team)
- move_base: mobile robot navigation (using Dijkstra pathfinding algorithm)

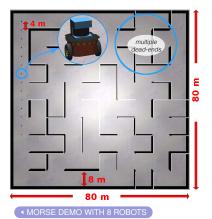
Setup Results

Robot setup

- gmapping: laser-based SLAM (Grisetti et al., 2007)
- explore: frontier-based exploration (Yamauchi, 1997)
- map_fusion: multiple maps merging (developed by our team)
- move_base: mobile robot navigation (using Dijkstra pathfinding algorithm)

Setup Results

Test bed setup



Computer cluster

- 70 computing nodes: 8 to 12 processors and 16Go to 48Go RAM
- 1 master node: scheduler

Setup Results

Experimental setup

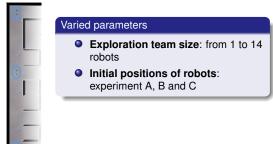
Fixed parameters

- Robot characteristics: a homogeneous team of Pioneer 3-DX robots equipped with a SICK LMS500 laser scanner
- Terrain properties: a maze-like space with 80 meters long and 80 meters wide
- Communication range: 200 meters

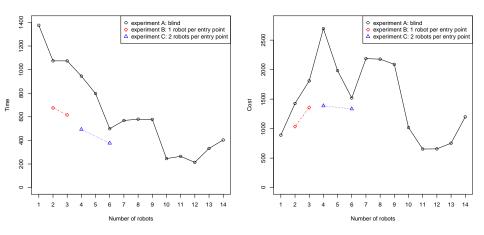
• Coordination strategy: collaborative mapping, robots exchange their map once every 5 seconds

Setup Results

Experimental setup


Experiments A Blind positionning

Experiments B 1 robot per entry point



Experiments C 2 robots per entry points

Setup Results

Results

Conclusion and future work

Contribution

- A realistic test bed for evaluating different coordination strategies for multi-robot exploration
- Preliminary experiments with time and cost evaluation metrics

Future work

- Different representative environments
- $\bullet~\mbox{More robots} \rightarrow \mbox{homogeneous and heterogeneous teams}$
- $\bullet~$ Odometry noise \rightarrow more efficient map fusion algorithms
- \bullet Communication range \rightarrow more efficient coordination strategies

Simulating Multi-Robot Exploration Using ROS and MORSE

Zhi Yan, Luc Fabresse, Jannik Laval and Noury Bouraqadi firstname.lastname@mines-douai.fr

Institut Mines-Telecom, Mines Douai http://car.mines-douai.fr

CAR 2014, June 23, 2014

Multi-robot communication Multi-robot mapping

Multi-robot communication

Algorithm 1 Communication Connection for robot_i

- 1: Querying all published ROS topics
- 2: Subscribing to odometry topics
- 3: **if** ∃*robot_j* ∈ exploration team : *distBetween*(*robot_j* − *robot_i*) < *max*_*comm_distance* **then**
- 4: Establishing connection with *robot_i*
- 5: end if

Multi-robot communication Multi-robot mapping

Multi-robot mapping

Algorithm 2 Map Fusion for robot_i

- 1: $\delta \leftarrow (robot_i.init_pose robot_j.init_pose) \times map_scale$
- 2: $robot_i$.fused_map \leftarrow $robot_i$.map
- 3: for all grid in robot_i.fused_map do
- 4: if $grid = NO_{-}INFORMATION$ then
- 5: $grid \leftarrow robot_j.map_{grid.pose+\delta}$
- 6: end if
- 7: end for