
Social signal processing 
and social robotics:

revealing social signatures 
Mohamed CHETOUANI

Professor
Institut Systèmes Intelligents et Robotique (ISIR)

Université Pierre et Marie Curie

Mohamed.Chetouani@upmc.fr



Social signal processing

‣ Human communication dynamics (Delaherche et al. 2012a):

‣ Computational models with explicit notion of social interaction

‣ From signal processing to interpretation of behaviours

‣ Inter-personal interaction:  mutual and dynamic influence of partners

‣ Key concepts in psycho-pathology and robotics

 

Still face experiments

Cerebral basis

Dumas et al., 2011

sodes of touch, t (34) ! 2.11, p " .05 (combined affectionate and
stimulatory touch). The latencies (in seconds) to the first episode
of father’s touch and social gaze at the infant were shorter in the
oxytocin condition, t (34) ! #2.22, 2.02, p " .05, respectively.
Infants’ social behavior similarly differed across conditions. Epi-
sodes of infant object manipulation were longer, t (34) ! 2.49,
p ! .05, and moments of social gaze toward father were longer in
the OT condition, t (34) ! 2.07, p " .05 (Figure 3). Infants were
quicker to reach the first episode of object manipulation in the
oxytocin condition, t (34) ! #2.02, p ! .05, and took longer to
avert gaze from father’s face, t (34) ! 2.25, p " .05, indicating
closer focus on the social context.

Associations between Oxytocin, RSA, and Social Behavior
Father OT in the PL condition showed high individual stability

(rs ! .47, .56, .42, p " .01 between baseline and T2, T3, and T4,
respectively) and the four assessments were averaged into a single
score, which indexed the father’s stable, nonmedicated level of OT.
This global OT score correlated with the father’s baseline OT in the
OT condition (r ! .38, p " .05), further supporting the stability of
salivary OT and the validity of the salivary measure. Fathers’ global
OT correlated with the fathers’ averaged RSA in the three FTFSF
episodes in the PL condition (r ! .34, p " .05). Finally, fathers’ global
OT correlated with fathers’ touch in both the OT (r ! .38, p " .05)
and PL (r ! .36, p " .05) conditions and with fathers’ social reciproc-
ity in the OT condition (r ! .35, p " .05).

Father baseline OT in the OT condition showed stability from
baseline to T2 (r ! .35, p " .05), marginal stability to T3 (r ! .30, p !
.08), and no association with T4. Fathers’ OT response to adminis-
tration (average of T2, T3, and T4 in the OT conditions) correlated
with the infants’ OT response to fathers’ administration (average of
T3 and T4 in OT condition), r ! .35, p " .05. No correlations emerged
between father or child OT response with RSA. Child OT response
correlated with father’s touch, r ! .41, p " .01, with longer latencies
to father gaze aversion, r ! #.36, p " .05, with greater child object
manipulation, r ! .37, p " .05, and with father-child touch synchr-
ony—moments when father and child shared social gaze is inte-
grated with paternal touch, r ! .48, p " .01.

Finally, father’s affect was measured before and 40 minutes after
administration and no differences were found in fathers’ self-reported
emotions in either session (42). Importantly, mean durations, propor-
tions, and frequencies of fathers’ positive, neutral, and negative emo-
tional expressions showed no differences between OT and PL condi-
tions, indicating that the findings are specific to affiliative processes
expressed during moments of social engagement.

Discussion

The current findings are the first to show that OT administration
enhances functioning in physiological and behavioral systems that
underpin parental-infant bonding in humans and that OT adminis-
tration to parent can have parallel effects on the child without
direct hormonal manipulation to the infant. These findings demon-
strate the involvement of OT in the cross-generational transmission
of parenting in humans by utilizing an experimental, and not a
correlational, research design. Oxytocin administration markedly
increased the fathers’ salivary OT, autonomic response during free
play, and parenting behavior, particularly touch and social reciproc-
ity. In parallel, the infants’ peripheral OT increased, infant RSA was
higher during social play, and infants displayed more social gaze
and exploratory behavior, indicating greater social engagement
when fathers inhaled OT. Peripheral OT and RSA have been associ-
ated with higher levels of infant social behavior (3,35), and disrup-
tions to parental-infant bonding, in cases such as premature birth or
maternal postpartum depression, are expressed in lower peripheral
OT (14), lower RSA (53), and reduced social behavior (54). In addi-
tion, peripheral OT, RSA, and parent-infant social behaviors have
each been shown in longitudinal studies to be stable within individ-
uals over time (11,27,55). Thus, the findings point to the effects of
OT on enhancing the individually stable markers of bonding in
parent and child.

Oxytocin is a neurohormonal system that dynamically engages
body and brain, organism and environment, and separate partners
within an attachment relationship (3). The findings demonstrate
the integrative effects of OT administration at three levels: between
central and peripheral OT, between OT response in parent and
child, and between the OT and parasympathetic systems. The link
between brain and peripheral OT activity has been an issue of
continuous controversy; yet, researchers have suggested that the
two are coordinated (56). One potential pathway involves the ef-
fects of alterations in brain OT on visceral functioning, particularly
the vagus, which lead to an increase in peripheral OT levels (57). This
hypothesis is consistent with the findings that vagal stimulation
leads to OT release in the brain (58). Porges and Carter (59) suggest
that the oxytocinergic and autonomic systems enhance each other
through positive feedback mechanisms and jointly establish a
sense of safety that enables the formation of affiliative bonds
(28,59,60). This conceptualization is consistent with the known an-
xiolytic effects of OT on internal state and social behavior (61).
Similarly, Bos et al. (62) suggest that gonadal steroids and neuro-
peptides jointly influence bonding by increasing OT-dopamine in-
teractions. In contexts perceived as safe, estrogen and OT increase
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Figure 3. Father and infant social behaviors in the oxytocin
and placebo conditions. Bar charts present social behaviors
that are enhanced in father and infant following oxytocin
administration to father. *p " .05. ***p " .001. Error bars
represent standard error of the mean.
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1. Role of social signals: motherese, motion, turn-taking and 
others... 

2. Modeling synchrony: a focus on motor imitation

3. Synchrony and social intelligence for personal robots

4. Using social signal processing and developmental robotics for 
clinical investigations in autism



‣ Human communication dynamics

‣ Nature of signals

‣ Rhythm 
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Role of social signals in synchrony
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E. Delaherche et al. : Evaluation of interpersonal synchrony: a survey across disciplines. IEEE Trans. on 
Affective Computing (2012)



‣ Toward a model of synchrony (Delaherche et al. 2012a)

‣ General approach for characterization

‣ From social perception to social interaction

‣ Useful in various models

‣Some examples

‣ Developmental psychology: modeling parent-infant 
interaction (Saint-Georges et al. 2011)

‣ Cognitive robotics: social engagement(Al Moubayed et al. 
2009)

Perception of 
social signals

Generation of
social signals

Social dynamics
model

BML

Non-verbal
communication
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Role of social signals in synchrony
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duration) and its association with dialog coordination and
task success. Benus et al. [77] studied the link between the
alignment of turn-taking behavior and the achievement of
pragmatic goals. They quantitatively measure the rhythm
entrainment between speakers as the latency of the first
pitch accent after a turn exchange divided by the rate
of pitch accents in the utterance preceding the turn ex-
change. Finally, [78] proposed using a machine learning
algorithm to predict the emotional coloring (valence, ac-
tivation, power) of an utterance based on the emotional
coloring of the previous utterance.

Fig. 1. Synopsis of a synchrony computational model

5.1 Features
The first step in computing synchrony is to extract the
relevant features of the dyad’s motion. With the exception
of Delaherche and Chetouani, who tried to model the
coordination between movement features and prosodic
features of speech (pitch, energy, pause and vocalic en-
ergy) [79], previous studies have focused on unimodal
features. We can distinguish between studies focusing on
the movement of a single body part and those captur-
ing the overall movement of the dyad. Several acquisi-
tion techniques are prominent in the literature: motion-
tracking devices, image-processing techniques (tracking
algorithms, image differencing) and physiological sen-
sors. Studies on a single body part usually use dedicated
motion tracking devices (speaker tongue position [80],
finger motion [81], eye movement [82], hand motion

[83], leg motion [84]). Several studies have focused on
the coordination between the postural movements of the
participants [85], [86], [87], as postural movements can be
mediated by a common tempo of verbal interaction.

Numerous studies focus on head motion, which can
convey emotion, acknowledgement or active participation
in an interaction. Head motion is captured using either a
motion-tracking device [88], [89], [90] or a video-based
tracking algorithm [91], [92], [93], [94], [95], [96]. Many
studies capture the global movements of the participants
[97], [75], [98], [79], [33], [99], [100], [101], [57], [102], [103],
[104]. Except for Boker and Rotondo [98], who used a
motion-tracking device, these studies use a video-based
algorithm to evaluate the dyad’s motion. Other studies
have also focused on the motion of an apparatus being
actuated by the participants (swinging pendulum [105],
[106], [107], [108], [109], [108] or rocking chair [110]).

5.2 Measures

5.2.1 Correlation
Correlation is certainly the most commonly used method
to evaluate interactional movement synchrony. After ex-
tracting the movement time series of the interactional
partners, a time-lagged cross-correlation is applied be-
tween the two time series using short windows of inter-
action. Several studies also use a peak picking algorithm
to estimate the time-lag of the predictive association
between two time series (i.e., the peak cross-correlation
that is closest to a lag of zero) [88], [89], [75].

A critical question is the choice of the length of the
windows of interaction. In the studies reviewed, the
length of the window varies from 1 s to 10 min with time-
lags of 0 to 5 s. Boker et al. raise the question of the time
series stationarity [89]. They compare the cross-correlation
between (a) the movements of two dancers synchronized
with each other and the rhythm of the music and (b)
the head movements of two persons conversing. In (a),
there is a stable pattern of synchronization during the
entire interaction; the data follow the assumptions for
a stationary process and the cross-correlation calculated
on the whole interaction is high. In (b), there might
be a ”high degree of association on short scales, but
due to nonstationarity, overall there might be only low
values of correlation”. Thus, a weak correlation between
time series could indicate either little coordination in the
conversation or nonstationary short-term coordination.

An additional issue is linked to the representation
or meta-parameters extracted from the cross-correlation
coefficients. A color-coded correlation map is the most
common way to represent cross-correlation coefficients
[80], [88], [89], [98], [33], [99], [100], [111], [104]. Time
is represented on one axis, and the different time-lags
are represented on the other. The correlation strength is
represented by different color shades. Correlation maps
have the advantage of showing a global snapshot of an
interaction. Sequences of high synchrony are easy to iden-
tify, and the difference between two dyads can be grasped

E. Delaherche et al. : Evaluation of interpersonal synchrony: a survey across disciplines. IEEE Trans. on 
Affective Computing (2012)



Human communication dynamics
Social signal processing approach

‣ «	
  Low-­‐resolu+on	
  brain	
  
scanning»	
  (Pentland)

thus considered to be reliable predictors of trust and empathy (Chartrand 

and Baugh, 1999), and mimicry has been manipulated to dramatically 

improve compliance (Bailenson and Yee, 2005).    

 

! Consistency or fluidity of movement or speech production is a well-known 

measure of cognitive load: novel physical activities or those ‘loaded’ by 

other mental activity have greater entropy (randomness) than activities that 

are highly practiced and performed with a singular focus. This relationship 

has long been used for diagnosis in both psychiatry (Teicher, 1995) and 

neurology (e.g., Klapper, 2003). 

 

    

cerebellar motor autonomic thalamic attention  mirror neurons 

ACTIVITY INFLUENCE MIMICRY CONSISTENCY 

CHANGE ON TIMING OF MOVEMENT 
 

Figure 2: Reality mining has shown that statistical analysis of behavior can be 

related to the function of some major brain systems, providing capabilities that can 

be thought of as a sort of low-resolution brain scanning technology. 

 

These qualitative measurements of brain function have been shown to be powerful, 

predictive measures of human behavior (Pentland, 2008). They play an important 

role in human social interactions, serving as ‘honest signals’  that provide social 

cues to dominance, empathy, attention, and trust, and may offer new methods of 

diagnosis, treatment monitoring, and population health assessments.  

 

Self-report data can also be collected to complement the unobtrusive, 

automatically-generated and -collected reality mining data streams. The widespread 

use of portable digital devices such as cell phones and personal digital assistants 

 5

Social learning (Meltzoff et al., 2009)
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C. Saint-georges et al. : Do parents recognize autistic deviant behavior long before diagnosis? taking into 
account interaction using computational methods. PLOS one, 2011
A. Mahdhaoui and M. Chetouani: Understanding parent-infant behaviors using non-negative matrix 
factorization, 2011.

Using high-level information:

• Real-life corpus: Family home movies

• Manually annotated by psychologist:

• Infant behaviors: vocalization, behaviors with 
objects, orienting toward people...

• Parent behaviors: vocalization, touching....
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Human communication dynamics
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C. Saint-georges et al. : Do parents recognize autistic deviant behavior long before diagnosis? taking into 
account interaction using computational methods. PLOS one, 2011
A. Mahdhaoui and M. Chetouani: Understanding parent-infant behaviors using non-negative matrix 
factorization, 2011.

 Non-negative matrix modeling of interactive situations

One of the first initiatives to employ data mining methods for understanding 
social interactions
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Human communication dynamics
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C. Saint-georges et al. : Do parents recognize autistic deviant behavior long before diagnosis? taking into 
account interaction using computational methods. PLOS one, 2011
A. Mahdhaoui and M. Chetouani: Understanding parent-infant behaviors using non-negative matrix 
factorization, 2011.

 Non-negative matrix modeling of interactive situations:

Part-based representation

V �WH

Data vector 
(nxm)

Expansion/
activation coeff.

(kxm)

Lee and Seung, Nature, 1999

Basis vectors
«dictionary» (nxk)

Basis Interactive 
Behaviors vectors



Human communication dynamics
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Application to investigations on early signs of autism:

• Diagnostic > 36 month

• Developmental issues: Semesters S1 (0-6 months), S2 (6-12) and S3 (12-18) 

• Comparisons of clusters obtained by NMF: Typical development, Intellectual disability, 
Autism

«Deviant behaviors»:
✓Reality mining method 
used by clinicians
✓Coherent with 
qualitative impressions of 
clinicians
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Role of social signals in synchrony

Weisman et al. : Oxytocin shapes parental motion during father-infant interaction . Biology Letters (2013)

Self-reporting, 
Manual annotations,

Questionnaires...

Social signal processing:
Machine perception and understanting of human 

behaviors

«Traditional ground-thuth» based on 
Human perception

Bio-behavioral approach

Salivary OT and CT collection

Social signal processing:
Machine perception and understanting of human 

behaviors

Chetouani et al. : Beyond traditional ground-truth labeling: A bio-behavioral synchrony approach for social 
bonding characterization . submitted
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Role of social signals in synchrony

Weisman et al. : Oxytocin administration to parent enhances infant physiological and behavioral readiness for 
social engagement. Biol. Psychiatry (2012)

Father'inhala+on'
OT'or'PBO'

40#mn# 20#mn# 20#mn#
OT#and#CT#
salivary#
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3#mn# 2#mn# 3#mn#

S"ll$Face$Paradigm$

Free$play$ Free$play$S"ll$face$

main effect for condition, F (1,33) ! 118.89, p " .001, ES ! .77,
indicating that infant OT differed according to father OT status. A
condition by time interaction, F (2,68) ! 162.32, p " .001, ES ! .82,
revealed that infants in the OT condition showed a dramatic in-
crease in salivary OT between the first (before father-infant interac-
tion) and next assessments.

Parasympathetic Activation
Fathers’ and infants’ RSA in the three episodes of the FTSSF and

fathers’ baseline RSA appear in Figure 2. Fathers’ RSA during free
play in the OT and placebo conditions were compared with paired-
comparison t tests and showed higher RSA in the oxytocin condi-
tion, t (34) ! 2.55, p " .05, suggesting greater autonomic readiness
for social engagement. In addition, assessing the change in fathers’
RSA from baseline to free play, calculated as RSA during free play

minus RSA at baseline, showed greater RSA increase in the OT
condition, t (34) ! 5.08, p " .05.

Infants’ RSA during the free-play episode was similarly higher in
the oxytocin condition, t (34) ! 1.98, p ! .05, indicating a parallel
effect on the infant’s parasympathetic response. A repeated-mea-
sure ANOVA conducted for father and infant separately showed no
difference in overall RSA level between conditions (OT, PL), sug-
gesting the effect was specific to the free-play episode.

Social Engagement Behavior
Among fathers, episodes of social reciprocity, indexing mo-

ments of infant-oriented positive vocalizations and encourage-
ment of infant orientation to the social context, were longer in
the oxytocin condition, t (34) ! 3.69, p " .001 (Figure 3). Simi-
larly, in the oxytocin condition, fathers exhibited longer epi-

Figure 1. Father and infant salivary oxytocin (OT) levels (pg/mL) in the oxytocin and placebo conditions. Following OT administration to father, father and
infant salivary OT levels are markedly increased compared with baseline assessment. In the placebo condition, no increase is observed. Error bars represent
standard error of the mean.
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Figure 2. Participants’ autonomic response (respiratory sinus arrhythmia) in the oxytocin (OT) and placebo conditions. Following OT administration to father,
father and infant cardiac vagal tone during face-to-face interaction are increased (grey lines), compared with placebo. In the OT condition, fathers showed
greater increase in respiratory sinus arrhythmia level from the pre-interaction to the social interaction assessment. *p " .05. Error bars are standard error of the
mean.

4 BIOL PSYCHIATRY 2012;xx:xxx O. Weisman et al.
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‣Low -resolution brain scanning

‣ Oxytocin modulates proximity (kind of motionese)

‣ Infant’s OT reactivity  positively correlated with father’s head acceleration
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Weisman et al. : Oxytocin shapes parental motion during father-infant interaction . Biology Letters (2013)
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1. Role of social signals: motherese, motion, turn-taking and 
others... 

2. Modeling synchrony: a focus on motor imitation

3. Synchrony and social intelligence for personal robots

4. Using social signal processing and developmental robotics for 
clinical investigations in autism



‣ Social learning

‣ Infant’s development

‣ Learning in robotics

‣ Problem :

‣ Modeling imitation during interaction

Social learning 
(Meltzoff et al., 2009)

8 Automatic Imitation Assessment in Interaction

Fig. 5. Windows analysis and research.

6 Experiments

6.1 Data

Current databases often enhance the gesture recognition, or give multiple videos
of the same action, done in di↵erent contexts. However, few data with synchro-
nized videos are available for interpersonal studies, with annotation. A database
of synchronized gestures for two partners has been presented in [33]. Table 1
gives the characteristics of this database, and figures 6 and 7 are illustrations of
it.

Table 1. Stimuli and conditions. We denote for each sequence its length l in seconds
and the number of gestures n in the sequence l[n].

Frequency Synchrony and Synchrony and
(in BPM) No Imitation Imitation

(S NBM) (S BM)
20 137[44] 62[19]
25 166[67] 71[28]
30 153[71] 59[27]

Fig. 6. Imitation dual video. Fig. 7. Non imitation dual video.

8 Automatic Imitation Assessment in Interaction

Fig. 5. Windows analysis and research.

6 Experiments

6.1 Data

Current databases often enhance the gesture recognition, or give multiple videos
of the same action, done in di↵erent contexts. However, few data with synchro-
nized videos are available for interpersonal studies, with annotation. A database
of synchronized gestures for two partners has been presented in [33]. Table 1
gives the characteristics of this database, and figures 6 and 7 are illustrations of
it.

Table 1. Stimuli and conditions. We denote for each sequence its length l in seconds
and the number of gestures n in the sequence l[n].

Frequency Synchrony and Synchrony and
(in BPM) No Imitation Imitation

(S NBM) (S BM)
20 137[44] 62[19]
25 166[67] 71[28]
30 153[71] 59[27]

Fig. 6. Imitation dual video. Fig. 7. Non imitation dual video.

‣ Computational modeling of synchrony  (Delaherche et al 2012b):

‣ Time (rhythm of partners, delay between responses)

‣ Pattern (similar gesture)

15

Imitation characterization through social 
signal processing



‣Unsupervised action recognition 
(Delaherche et al. 2012b)
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8 Coordination Assessment : Distinguishing Between Shape and Timing

average the mean and variance of InterRn were respectively 0.99 and 0.13 for
the S conditions. The S and NS conditions were compared with a Mann-Whitney
U-test and the di�erence between the samples was significant (U=5147,p=7.68e-
12). In the S condition, InterRn is close to 1 and varied less than in the NS con-
dition. Moreover, InterRn is lesser than 1 in the NS condition showing that the
rhythm of partner B is smaller than the rhythm of partner A. This is consistent
with our scenario for the NS condition in which partner A was asked to gesture
continually while partner B only gestured at the pace of the metronome.

Identical Gestures Detection Module We assessed the measure of dis-
tance in the S BM and S NBM conditions on the segmented sequences. To
test the robustness of the method, the codebook was learned on a di�erent
database than the one that serves for testing. This database was constituted
with 8 videos of two di�erent subjects performing 5 di�erent actions composed
with raising arms and waving sequences. We compared several sizes of codebook
k = 32, 64, 128, 256, 512, 1024 and several sizes of window to assess the distance
T = 0.6, 1, 1.5 and 2s. We performed left-tailed t-tests to compare the S BM and
S NBM conditions. We found that the distance was significantly below in the
S BM condition compared to the S NBM condition (p<0.001) for all k and T .
We finally considered a S BM and S NBM classification application and drew
the ROC curves by varying the threshold on the distance (Fig. 4). The best
results were obtained for 64 codewords and windows of 1s. We analyzed the 23
confusions (S NBM confused for S BM) corresponding to the best threshold.
Among them 9 corresponded to gestures in the same direction but at di�erent
levels (e.g.raising arms face /side /up), 4 to partial imitation (one arm performs
the same gesture and not the other), 4 were identical gestures, 4 to completely
di�erent gestures and 2 were gestures with the same final position but with
di�erent initial positions.
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Fig. 4. Comparaison of the distance measure in the S BM and S NBM conditions

5.3 Conclusion

In this paper, we proposed a new framework to assess separately synchrony
and behavior matching in dyadic interactions. We proposed several metrics that

16
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‣Using behaviors to analyze brain synchonization 
(Delaherche et al., submitted)

17

Imitation characterization through social signal processing 8

(a) Manual indexing

(b) Automatic indexing

Fig. 4. Illustration of the di↵erent EEG measures with the contrast in the
theta frequency band (3-8Hz) of Imitation and Non-Imitation periods.

5. Conclusion

In summary, we have presented a new automatic indexing
of imitation during spontaneous social interaction in dyads.
Thanks to hyperscanning-EEG recordings, we have also com-
pared how this automatic indexing a↵ect common EEG mea-
sures in comparison with the traditional frame-by-frane man-
ual indexing. These experimental results show that our method
can significantly discriminate periods of imitation and non-
imitation at both behavioral and neural levels. Future works
need to investigate how to integrate other behavioral parame-
ters such as interactional synchrony for further improving the
classification performance and also for better interpretation of
the neurophysiological observations.
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points in the neighbourhood of the main diag-
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Fig. 2. Imitation/Non-Imitation classifiers

Moreover, the Classifier 3 consistently gives better performance
than the Classifier 2, itself performing better than Classifier 1.

For the best classifier (Classifier 3, T=0.8s), we compared
the percentage of time windows correctly classified according
to the duration of the Imitation or Non-Imitation phase. We can
see on figure 3 that the classifier performance is higher when
the duration of the phase is above 1s for Imitation phases and
3s for Non-Imitation phases. These performances are also more
stable when the duration of the phase is higher.

3.2. Neurophysiological data : impact of the indexing on com-
mon EEG measures

Automatic and manual indexing are compared for both local
and distant EEG measures: power, phase-locking value (PLV),
and hyper-phase-locking value (hPLV). The figure 4 illustrates
the statistical di↵erences between periods of imitation and non-
imitation for the theta frequency band. Colors indicate the t
values. The power di↵erences are mapped on the colors of
the heads, and synchronization (PLV,hPLV) di↵erences are in-
dicated by links between related electrodes. Notice how the
contrasts are similar for both automatic and manual segmenta-
tion: in both case the imitator tends to have an increase of theta
activity at both power and PLV levels while the opposite ef-
fect occures for the driver. The figure 5 summarizes the global
results across all frequency bands. For each measure, positive
and negative variations are indicated in the case of manual, au-
tomatic and scrambled indexing (i.e. null hypothesis). Statisti-
cally significant di↵erences with scrambled indexing are indi-
cated with an asterix (*, p<0.05). We can notice how the au-

tomatic indexing gives intermediate results between the scam-
bled and manual indexing. This demonstrates a less precise
detection of neurophysiological relevant periods of imitation
and non-imitation than with frane-by-frame analysis. OVerall,
the automatic method appear to better detect PLV di↵erences
in general, and power di↵erences in the high frequency bands.
Despite a tendency, there is no significant results for hPLV con-
trasts using the automatic indexing.

4. Discussion

We showed how unsupervised indexing of imitation can be
applied to spontaneous social interaction. The method is com-
pared to the traditional manual and frame-by-frame indexing.
Results show some di↵erences at the behavioral level and mea-
sure how they impact subsequent hyperscanning-EEG analyses.

4.0.1. Interpretations
At the technical level, taking into account a series of win-

dows to make the decision (Classifier 2), rather than a single in-
teraction window (Classifier 1) improves the performance of the
automatic indexing. Classifier 3 in turn integrates a neighbor-
hood around the diagonal for taking the decision, thus compen-
sating small delays between participants. If partners are slightly
o↵set in time and they perform periodic movements in opposite
directions, the similarity measure will be low on the diagonal
of the matrix of recurrence. In particular, if the partners are in
opposite phase (one raises his arm while the other down, for
example). As against, if viewed in the neighbourhood of the di-
agonal (for an o↵set equal to the period of the beat frequency),
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Figure 1. The object learning experimental scenario.

they can share knowledge about it. The experiment consists of a supervised learning process, across two123
phases: a teaching phase and a verification phase. In the first phase, the robot is taught the labels of124
the objects by the human partner. In the second phase, the human gazes to one of the objects, and the125
robot responds with the learnt label. The sequences of events in the experimental protocol are shown in126
Figure 2. Notably, the teaching phase can be performed in two different conditions: Human Initiative (HI)127
and Robot Initiative (RI). HI and RI conditions are used to establish which partner initiates the action, that128
is the first who gazes at the object of interest.129

The teaching phase is as follows:130

(1) The robot waits for the human to establish eye-to-eye contact. When mutual engagement occurs, the131
robot starts speaking to introduce the next step.132

For all the objects on the table:133

(2) The gaze leader (HI: human, RI: robot) looks at one of the objects on the table. In the RI condition,134
the robot simply gazes at one of the objects and asks information about it. In the HI condition, the135
robot asks first the human to look at an object: this step is necessary to stimulate the human to do136
the gazing action. In response to the robot request, the human moves his head and eyes to look at137
one of the items on the table.1138

(3) The gaze follower (HI: robot, RI: human) looks at the object of interest on the table. In the HI139
condition, the robot tracks the human head movement, estimating yaw and pitch of the head, it then140
drives its head at the intersection of the gaze direction and the table, which allows the identification141
of the object of interest. In the RI condition, the robot’s head motion is coupled with the information142
request to the human. This induces joint attention in the human, who naturally looks at the object143
selected by the robot.144

1 It has to be remarked that estimating the gaze simply looking at the head movements is quite challenging with respect to estimating the gaze using a
combination of head and eyes movements. However, the latter estimation typically requires an external device, such as an eye-tracker, to track the eye
movements.

Frontiers in Neurorobotics 4
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 













 





Figure 2. Schematic representation of the events in the experimental protocol. Two different conditions are tested for the teaching phase. RI: the robot
initiates the phase by looking at a random object. The human, if engaged, naturally looks back at the common object of interest. When both partners look at
the object, the robot asks the color of the object and the human answers. HI: the human initiates the phase by looking at a desired object. The robot tracks the
human head movement, then estimates the object that is observed by the human. It asks about the color of the object, which is answered by the human. The
color label is then associated to the object. In the verification phase, the human validates if the robot correctly learned the object colors. The human looks
randomly at some objects. The robot tracks the human gaze, estimates the object of interest, retrieves the color label learned in the teaching phase and says the
color to the human.

(4) The two partners focus their attention on the same object. The robot asks the human some145
information about the object, in this scenario its color.146

(5) The human tells the robot the object’s color. The speech is captured by a lavalier microphone,147
which improves the quality of the sound source for the speech recognition system. At this point,148
the human can either look at the robot or at the object (there is no constraint on his gaze).149

(6) The robot retrieves the color name from the natural human speech, then it associates the color150
label to the most prominent color feature of the object observed in the camera image. Once this151
association is successful, the robot looks back at the human.152

(7) The robot greets.153

Once the robot has learned the labels for all the objects, a verification phase begins. In this second phase,154
the human looks at the objects on the table, one by one in a random order, and the robot says what he155
learned about this object.156

The verification phase is as follows:157

(1) The robot waits for the human to establish eye-to-eye contact. When mutual engagement occurs, the158
robot starts speaking to introduce the next step.159

Until the human is disengaged:160

Frontiers in Neurorobotics 5
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Figure 3. iCub’s cognitive architecture (from (Ivaldi et al., 2013)) enriched with the new modules. In green, the modules that have been used for the
experiment of this paper.

• 3D People tracking: we use a multiple skeleton tracking system by OpenNI to track the position of236
humans (Shotton et al., 2011).237

• Head Pose estimation: the 3D position of the head of the human partner is retrieved by a segmen-238
tation of the RGB-D images guided by the skeleton information. The head pose is estimated by the239
Constrained Local Models algorithm (Cristinacce and Cootes, 2006).240

• Gaze tracking: the gaze of the human partner is approximated by the head orientation (pitch and241
yaw). The estimation is thus inaccurate, but it is the simplest way that does not necessitate the use of242
external devices (e.g. eye trackers) or the availability of high-resolution cameras to observe head and243
eye movements. The adopted solution is also non “invasive”, resulting in a more natural interaction.244

• Simple Object Recognition: a simple object recognition module assumes the object of interest to be245
roughly at the center of the visual field of the cameras. This is consistent with the fact that the robot246
gazes at the objects pointed out by the human partner, so the object is centered in the camera images.247
A simple image processing pipeline is used to segment the object from the background, extract its248
contours and compute its most characteristic color, which is used for label association.249

• Verbal communication: the robot communicates through a text-to-speech synthesis module based on250
Festival, and a speech recognition module based on CMU Sphinx.7251

• Object labeling: we defined a simple grammar to identify the color label from the natural speech of252
the human partner interacting with the robot.8 The label is then associated to the colorimetry feature253
of the object, identified by the object recognition module from the camera images.9254

7 Festival: http://www.cstr.ed.ac.uk/projects/festival/. CMU Sphynx: http://cmusphinx.sourceforge.net.
8 For example, the human could say “The object is orange”, “It is orange” or simply “Orange”.
9 As the association color label - color feature is done after the human speech, the human could actually teach a wrong color label to the robot.

Frontiers in Neurorobotics 8



‣Some results:

22

Social intelligence for personal robots

Ivaldi et al. : Robot initiative in a team learning task increases the rhythm of interaction but not the perceived 
engagement . Frontiers in Neurorobotics (2014)

Ivaldi et al. Robot initiative in team learning task increases the rhythm of interaction

Figure 4. Ideal timeline for the human’s and robot’s gaze during the teaching phase of the experiment, in the RI condition. The robot gaze (blue line) is moved
towards the human head to look for eye contact. When mutual eye contact is established, in the RI condition the robot lowers the head to look at one of the
objects on the table. The human, if engaged, follows the robot gaze (red line). When both partners look at the same object, the information exchange can take
place. In this situation, the human can keep gazing at the object or look back at the robot for a confirmation (dashed lines).

Figure 5. Some examples of the humans’ and robot’s gaze during the experiments. Four subjects from the RI condition are shown: a participant familiar
with the robot (top plot), two subjects that knew the robot but where interacting with it for the first time (middle plots), and a subject unfamiliar with the
robot (bottom plot). Blue lines correspond to the robot gaze, while red lines correspond to the human gaze. The head yaw is shown, so there are three visible
locations corresponding to the three objects on the table. In the first part of each plot, the green vertical lines mark the beginning of each phase where the robot
starts looking at an object of interest. In the second part of each plot, the cyan vertical lines mark the beginning of each phase where the human looks at an
object of interest.

Frontiers in Neurorobotics 10

Ivaldi et al. Robot initiative in team learning task increases the rhythm of interaction

Figure 4. Ideal timeline for the human’s and robot’s gaze during the teaching phase of the experiment, in the RI condition. The robot gaze (blue line) is moved
towards the human head to look for eye contact. When mutual eye contact is established, in the RI condition the robot lowers the head to look at one of the
objects on the table. The human, if engaged, follows the robot gaze (red line). When both partners look at the same object, the information exchange can take
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Figure 5. Some examples of the humans’ and robot’s gaze during the experiments. Four subjects from the RI condition are shown: a participant familiar
with the robot (top plot), two subjects that knew the robot but where interacting with it for the first time (middle plots), and a subject unfamiliar with the
robot (bottom plot). Blue lines correspond to the robot gaze, while red lines correspond to the human gaze. The head yaw is shown, so there are three visible
locations corresponding to the three objects on the table. In the first part of each plot, the green vertical lines mark the beginning of each phase where the robot
starts looking at an object of interest. In the second part of each plot, the cyan vertical lines mark the beginning of each phase where the human looks at an
object of interest.
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Figure 2. Schematic representation of the events in the experimental protocol. Two different conditions are tested for the teaching phase. RI: the robot
initiates the phase by looking at a random object. The human, if engaged, naturally looks back at the common object of interest. When both partners look at
the object, the robot asks the color of the object and the human answers. HI: the human initiates the phase by looking at a desired object. The robot tracks the
human head movement, then estimates the object that is observed by the human. It asks about the color of the object, which is answered by the human. The
color label is then associated to the object. In the verification phase, the human validates if the robot correctly learned the object colors. The human looks
randomly at some objects. The robot tracks the human gaze, estimates the object of interest, retrieves the color label learned in the teaching phase and says the
color to the human.

(4) The two partners focus their attention on the same object. The robot asks the human some145
information about the object, in this scenario its color.146

(5) The human tells the robot the object’s color. The speech is captured by a lavalier microphone,147
which improves the quality of the sound source for the speech recognition system. At this point,148
the human can either look at the robot or at the object (there is no constraint on his gaze).149

(6) The robot retrieves the color name from the natural human speech, then it associates the color150
label to the most prominent color feature of the object observed in the camera image. Once this151
association is successful, the robot looks back at the human.152

(7) The robot greets.153

Once the robot has learned the labels for all the objects, a verification phase begins. In this second phase,154
the human looks at the objects on the table, one by one in a random order, and the robot says what he155
learned about this object.156

The verification phase is as follows:157

(1) The robot waits for the human to establish eye-to-eye contact. When mutual engagement occurs, the158
robot starts speaking to introduce the next step.159

Until the human is disengaged:160
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Figure 6. Normalized gaze heat map of the human partners in the HI and RI groups. The plots show the points in the pitch-yaw space representing the gaze
direction of the human partners during the interaction with the robot. Note that the range of pitch and yaw is [0, 180]degrees. For the head pitch, 0 is on top
of the head, 90 is in front of the head, 180 is below the head. For the yaw, 90 is in front of the head, while 0 and 180 represent left and right.

Table 1. Characteristics of the four clusters of gaze points, corresponding to robot and objects, in the normalized head’s
pitch-yaw space of the subjects in HI and RI groups.

Target Phase Yaw mean var Pitch mean var Density mean std Wilcoxon’s test

Robot HI 2.51 31.52 0.40 42.38 0.647 0.197 W=22,
p-value=0.804RI 2.24 26.05 5.61 31.31 0.673 0.259

Left object HI -33.56 50.08 13.92 172.13 0.089 0.050 W=37,
p-value=0.128RI -25.45 47.44 13.54 109.67 0.052 0.049

Center
object

HI 5.88 34.21 18.78 59.25 0.190 0.213 W=26,
p-value=0.901RI 0.82 20.96 28.08 39.05 0.229 0.258

Right object HI 31.60 51.44 16.94 176.88 0.072 0.054 W=32,
p-value=0.383RI 29.58 85.28 12.73 118.95 0.045 0.037

Mean and variance refer to the coordinates of the x- and y-axis (yaw and pitch) of the points in each cluster. Wilcoxon’s test was applied on the normalized
densities of each cluster.

Table 2. Reaction time (seconds) in response to robot atten-
tion stimuli (utterances) during verification phase

Group mean std median Wilcoxon’s test

HI 1.932 0.711 1.917 W=418,
p-value=0.005RI 1.296 1.145 1.106

more body language. It is also possible that the evaluation of the interaction by the subjects may be influe-344
nced by other factors: first, the surprise effect due to the first encounter with a humanoid robot, which was345
unknown to most of them; second, the frustration of not having successfully completed the task for factors346
not correlated directly to gaze (for example speech). Finally, the judgment of the “human-likeness” of the347
robot may also be influenced by the expectation the subjects had during the interaction. During the task,348
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Figure 7. Reaction time to robot attention stimuli and time interval between consecutive attention requests in the verification phase.

Table 3. Time interval (seconds) between consecutive robot
attention stimuli (utterances) during verification phase

Group mean std median Wilcoxon’s test

HI 9.524 1.515 8.588 W=447;
p-value=1.6e-5RI 7.287 1.653 7.257

their behavior unconsciously adapted to the robotic partner. In short, subjects established a new interaction349
pattern with the robot, which is different from the one they have naturally with other humans.350

3.3 EVALUATION BY THIRD-PERSONS

Table 5 reports the statistics about the first part of the post-experiment questionnaire given to external351
observers (mean, standard deviation, minimum and maximum value assigned to evaluate each question).352
Statistical analysis was realized in R through the Welch two-sample t-test, comparing the answers of353
all questions for the two groups. Significance level was set at 95%. The analysis shows that there is no354
significant difference between the A and B conditions: for each question p > 0.4, which indicates that355
the vision of the human-human interaction demonstrating the task did not influence the perception of356
the observers. This means that seeing a human-human demonstration of the task is not a bias in judging357
the human-robot interaction task. Overall, subjects evaluated positively the aspects related to the task358
(Questions 2, 7 especially). The “human-likeness” of the gaze and more generally the robot’s behavior is359
above the neutrality threshold, so rather positive. This result can be explained by looking at the second360
part of the questionnaire, where the subject had to indicate the main issue of the teaching phase of the361
experiment as well as the most important feature that in their opinion would have been necessary for362
a more human-like interaction. Subject could choose among a list of predefined items, but could also363
propose their own. Table 6 reports the percentages of answers for each group. For both groups, two are364
the main issues with the teaching phase of the experiment. The first is the “slowness” of the robot that365
replies with a certain delay to the human labeling; it also keeps the pace of interaction globally low with366
respect to what a human would do. This is especially remarked by the subjects of group A, who saw367
the human demonstration (that was quicker than any human-robot interactions shown in the video). The368
second negative point is about the robot’s movements that are not perceived as natural enough. This can be369
explained by looking at the answers of Question 11, where subjects could indicate the critical features to370
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Experiment 3: teaching to build an object (EDHHI)

1) acceptance test 2) teaching through physical 
interaction

3) functional acceptability 4) social acceptability
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1. How do people behave ? 
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2. How much force do they apply on the robot?

3. Do these measures change depending on the:
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• personal attitudes
• demonstration of experienced users
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Annex I – DoW – Part B SPENCER, No. 600877

Figure B.3: Group-friendly navigation is one example of socially normative robot behavior that we seek to
learn in SPENCER. This requires detection and tracking of groups from on-board sensors, the estimation of
social relations between individuals, and socially-aware motion planning. Thanks to such cognitive capabil-
ities, SPENCER will make robots in human environments more acceptable from a user perspective and at the
same time more task-efficient and safe.

Another major motivation that drives SPENCER comes from an end-user and exploitation point of view.
The SPENCER consortium includes a major European airline, KLM, that considers the technologies devel-
oped in SPENCER as highly relevant for the area of transfer passenger services. Up to 80% of passenger
traffic at their home base Schipol Airport in Amsterdam is due to transfer passengers. The efficient handling
of this passenger flow is a significant operational challenges with a number of daily problems. Examples in-
clude: passengers that miss their connecting flights (e.g. due to time lost at the Schengen barrier), passengers
discomfort due to short disembark-embark times, wayfinding problems, or language and alphabet barriers,
or the support of passengers in need of assistance (e.g. elderly people or families). Given limited human re-
sources and growing demands on traveling, innovative solutions for the handling of these customers are highly
needed in the competitive environment of the aviation industry. SPENCER will provide such a solution by
building, deploying and evaluating a mobile robot demonstrator with a guidance and information provision
task in the area of smart passenger flow management. See Section B.1.1 for details.

This motivation is further underlined by the three associated end-users, supporting the SPENCER project
on the Advisory Board. In their letters of support, they describe operational challenges also in the area of
passenger ground services and see applications of SPENCER technologies for the solution of various real
problems including passenger flow optimization, navigation, or information provision (see attached letters
and the additional use-cases in Sec. B.3.1).

Objectives

In response to these needs and opportunities, SPENCER will make significant contributions to the field of
cognitive systems in human environments. The expected outcome of the project comprises the following:

• Robust detection, tracking and multi-person analysis of individuals and groups of people from mobile
platforms across multiple sensors, distances and attribute confidences

• Innovative recognition methods for social relations and social hierarchy within groups of people that
are robust over occlusions likely to occur with sensors on mobile platforms

• New foundations for learning, modeling, and benchmarking social norms for cognitive systems includ-
ing novel methods for the recognition of social activities and situations.

• Socially normative robot behavior learning and adaptation for human-aware navigation and interaction
including their appropriate fusion and concatenation to complex task-level behavior blocks

• Systematic and continuous evaluation of the achieved results through user studies that assess socio-
psychological effects of normative robot behaviors including cross-cultural aspects

• Novel methods for real-time integrated motion planning under socially normative constraints

Page 3 of 68
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1. Role of social signals: motherese, motion, turn-taking and 
others... 

2. Modeling synchrony: a focus on motor imitation

3. Synchrony and social intelligence for personal robots

4. Using social signal processing and developmental robotics for 
clinical investigations in autism



Extraction of social signatures during Human-
Robot Interaction

‣Case of Human-Human Interaction

‣ Mutual influence of partners

‣ Paradigm-shift Looking at partner A to analyze partner B!
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‣ Proposition: Evolution of computational model’s parameters inform us about the human partner
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Imitation game between caregiver and robot Learning: Sensory Motor architecture
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Fig. 2. Overview of experimental protocol: 1) imitation game between caregiver and robot to learn postures; 2) sensory-motor architecture based on a neural
network; and 3) metrics to assess the impact of caregivers

Fig. 4. Global architecture for the recognition and imitation of postures:
visual processing enabled sequential local views to be extracted (a circle
corresponds to a focus point); the V F group (local view recognition) learned
the local views (each group of neurons, MIS, MISP , STM and MP ,
contained 5 neurons that corresponded to 4 postures and a neutral posture).

Fig. 5. Visual processing is shown above: this visual system was based on
the sequential exploration of the image focus points. A gradient extraction was
performed on the input image. A Difference of Gaussian (DOG) convolution
provided the focus points. Finally, the local views (shown by arrows) were
extracted from around each focus point.

B. Focus points detection

The visual system was based on the sequential exploration
of the image focus points. A gradient extraction was performed
on the input image. A Difference Of Gaussian (DOG) convo-
lution provided the focus points. Finally, the local views were
extracted from around each focus point (Fig. 5). However,
there was no constraint on how the local views were selected
(i.e., no framing mechanism). This procedure can result in
many distractors, such as objects in the background, as well
as irrelevant parts of the human body.

C. Visual features
Fig. 4 shows the sensory-motor architecture that enabled

the learning, recognition and imitation of postures. The ex-
tracted local view around each focus point was learned and
recognized by a group of neurons V F (visual features) using
a k-means variant that enabled online learning and real-time
functions [43] called SAW (Self Adaptive Winner takes all)

V Fj = netj .Hmax(γ,net+σnet)(netj) (1)

netj = 1−
1

N

N∑

i=1

|Wij − Ii| (2)

V Fj is the activity of neuron j in the group V F . Hθ(x) is
the Heaviside function1. Here, γ is a vigilance parameter (the
threshold of recognition). When the prototype recognition is
below γ, then a new neuron is recruited (incremental learning).

net is the average of the output, and σnet is the standard
deviation. This model enables the recruitment to adapt to the
dynamics of the input and to reduce the importance of the
choice of γ. Thus, γ can be set to a low value to maintain
a minimum recruitment rate. The learning rule allows both
one-shot learning and long-term averaging. The modification
of the weights (Wij) is computed as follows:

∆Wij = δj
k(aj(t)Ii + ε(Ii −Wij)(1− V Fj)) (3)

with k = ArgMax(aj), aj(t) = 1 only when a new neuron
is recruited; otherwise, aj(t) = 0. Here, δjk is the Kronecker
symbol2, where ε is the adaptation rate for performing long-
term averaging of the stored prototypes. When a new neuron is
recruited, the weights are modified to match the input (the term
aj(t)Ii). The other part of the learning rule, ε(Ii −Wij)(1−
V Fj), averages the already learned prototypes (if the neuron
was previously recruited). The closer the inputs are to the
weights, the less the weights are modified. Conversely, the

1Heaviside function:

Hθ(x) =

{

1 if θ < x
0 otherwise

2Kronecker function:

δj
k =

{

1 if j = k
0 otherwise

Boucenna et al. : Learning of social signatures through imitation game between a robot and a human partner. 
IEEE Transaction on Autonomous Mental Development (2014)
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‣ Social learning  (Boucenna et al. 2014) 

‣ Proposition: Evolution of computational model’s parameters inform us about the human partner

Recognizing human postures

Recognition rates for adults,  typical and 
autistic children 
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Fig. 7. The success rate is shown for each posture for different partici-
pants (adults, TD children, and children with ASD) obtained during natural
interaction with the robot. During the learning phase (which only lasted
2 minutes), humans imitated the robot, and then the robot imitated them.
Different participants interacted with the robot: 11 adults (corresponding to
2000 images), 15 TD children (corresponding to 3100 images) and 15 children
with ASD (corresponding to 3100 images). Each image was annotated with
the response of the robot during the online interaction, enabling the statistical
analyses to be performed offline.

the effect of the human partner on the robot learning. In other
words, we compared the success rates of each partner group
to analyze and understand their impact on the robot learning.

B. Learning according to the number of recruited neurons in
adults, TD children and children with ASD
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Fig. 8. The number of neurons needed to learn with different participants
(adults, TD children, and children with ASD) interacting with the robot: 11
adults (corresponding to 2000 images), 15 TD children (corresponding to 3100
images) and 15 children with ASD (corresponding to 3100 images)

As explained above, we used a new metric to assess the
impact of participants on robot learning. Fig. 8 shows the
number of neurons needed to learn with different participants.
To compare the three groups composed of adults, TD children
and children with ASD, we used the Chow test [18] and a
significance threshold of p < 0.05. The results show that the
V F group recruited more neurons when the robot interacted

with children with ASD than when the robot interacted with
adults or a TD child (p < 0.05). Consequently, the robot
appeared to recognize the postures of adults and TD children
more easily than those of children with ASD.
This result can be attributed to the higher complexity of the

visual input (i.e., the participant posture) when children with
ASD imitated the robot. Despite successful performance dur-
ing the imitation task, as given by the annotation score, more
variability was observed in the postures of the children with
ASD. Fig. 7-8 confirm the impact of the participants on the
robot learning and show the different developmental trajecto-
ries of the robot. The number of neurons required by the robot
and the postures recognition varied with the characteristics of
the participants. Consequently, the robot saw features that the
therapist did not see. All these results show that the robot
precisely analyzed the human’s postures unlike the therapist
annotating the video recording (subjective criterion, annotation
time). The robot had difficulties to learn from a demonstrator
who has more movement variability. However, the result is
interesting because the robot discovers this complexity without
the intervention of the human engineer. This property emerges
from the sensory-motor architecture based on neural network,
through which the robot can provide a sophisticated metric.
Finally, we also assessed learning using normalized mu-

tual information for paired participants. Table II shows the
normalized mutual information used to measure the agree-
ment between two clusters belonging to two groups. The
NMI measured the similarity between the two groups. The
NMITDvs.Adult between the TD children and the adults
was 0.57. The NMIASDvs.Adult between the children with
ASD and the adults was 0.6. The NMITDvs.ASD between
the TD children and the children with ASD was 0.62. The
results reinforce previous results (Fig. 7), enabling us to draw
the following conclusions: (1) age affects learning because
the NMI for both groups of children differed substantially
from that for the adult group, though the same number of
neurons were needed to learn with the TD children as for the
adults; and (2) a pathological effect also contributes to learning
because the NMI between the TD children and the children
with ASD was far from 1.

TD/ASD TD/adult ASD/adult
NMI 0.622 0.570 0.603

TABLE II
NMI (NORMALIZED MUTUAL INFORMATION), WHICH MEASURES THE

AGREEMENT BETWEEN TWO CLUSTERS BELONGING TO TWO
POPULATIONS AND SHOWS THE SIMILARITY BETWEEN THE TWO

POPULATIONS

C. Does first partnership (ASD vs. TD) during the learning
phase influence robot learning?
Two cases were tested to assess this issue. In the first case,

the robot interacted and learned first with the TD children,
followed by interacting and learning with the children with
ASD. In the second case, the robot interacted and learned
first with the children with ASD, followed by interacting and
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Fig. 2. Overview of experimental protocol: 1) imitation game between participant and robot to learn postures; 2) sensory-motor architecture based on a
neural network; and 3) metrics to assess the impact of participants and to allow the extraction of social signatures.

III. MATERIALS’ & METHODS’ OVERVIEW
A. Participants

ASD (N=15) TD (N=15)
Age, mean (± SD), year 9.25 (± 1.82) 8.06 (± 2.49)
Male - Female 13-5 9-6
ADI-R, current, mean (± SD)
Social impairment score 10.77 (± 5.3) Not relevant
Verbal communication score 7.72 (± 4.22) Not relevant
Non verbal communication score 4.3 (± 3.5) Not relevant
Repetitive interest score 2.5 (± 1.88) Not relevant
Developmental score 3.3 (± 1.5) Not relevant
Total score 31.1 (± 5.46)
ADI-R, 4-5 years, mean (± SD)
Social impairment score 17.33 (± 8.47) Not relevant
Communication verb score 13.75 (± 5.72) Not relevant
Communication non-verb score 8.08 (± 4.4) Not relevant
Repetitive interest score 5.25 (± 3.52) Not relevant
Developmental score 3.83 (± 1.47) Not relevant
Total score 48.25 (± 7.34)
Developmental age 7.47 (± 2.9) 8.06 (± 2.49)
IQ* 73 (± 14) All controls > 80
GAF score 40.27 (± 9.44) All controls > 90
Imitation score / therapist** 18.0 (± 3.46) 19.66 (± 1.29)
Imitation score / Nao** 17.27 (± 5.24) 19.53 (± 1.81)

TABLE I
SOCIO-DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE YOUNG
PARTICIPANTS. ASD=AUTISM SPECTRUM DISORDER; TD=TYPICALLY
DEVELOPING; SD=STANDARD DEVIATION. *ASSESSED WITH THE
VINELAND DEVELOPMENTAL SCORE, THE PSYCHOEDUCATIONAL
PROFILE-REVISED, THE KAUFMAN ASSESSMENT BATTERY FOR

CHILDREN OR THE WECHSLER INTELLIGENCE SCALE FOR CHILDREN. **
FROM MANUAL ANNOTATION OF THE VIDEO RECORDING OF

INTERACTION.

The protocol was approved by the Pitié-Salpêtriére hospital
ethics committee. All the parents received information on the
experiment and gave written consent before the participation of
their child. Fifteen children participated in the study (Table I).
They were followed in the day-care setting for ASD of the
Pitié-Salpêtriére hospital. Fifteen typically developing (TD)
children were recruited from several schools in the Paris area.
The controls met the following inclusion criteria: no verbal
communication impairment, no intellectual disability, and no
motor, sensory or neurological disorders. The controls were
matched to the children with ASD with respect to their devel-
opmental ages and genders. For the control group, the develop-
mental and chronological ages were considered to be the same.

Children with ASD were assessed with the Autism Diagnostic
Interview-Revised (ADI-R) [50] to assess ASD symptoms,
and the Global Assessment Functioning to assess the current
severity. The psychiatric assessments and parental interviews
were conducted by three child psychiatrist/psychologists who
are specialized in autism. The developmental age was assessed
using a cognitive assessment. Depending on the childrens
abilities and ages, we used either the Wechsler Intelligence
scales, the Kaufman-ABC or the Psycho-Educational Profile,
third version (PEP-III). Each participant has performed the
experiment with the robot only one time.

B. Methods
In this study, we adopted a developmental approach

whereby a robot learned through interaction with a human
partner. Posture recognition was learned autonomously using a
sensory motor architecture through an imitation game between
the participant and the robot. Fig. 2 shows an overview of the
study. Here, we aimed to investigate how a robot could learn
to properly imitate a person’s posture during an interaction
composed of two phases. During the learning phase, the robot
produced a random posture, and the participant imitated the
robot; then, the robot associated what it did with what it
saw. The developmental model consisted of a sensory motor
architecture based on the neural network developed in [11].
This architecture enables learning without explicit teaching
signals that associate a specific posture with the robot’s inter-
nal motor state. To test our model, the following experimental
protocol was adopted. In the first phase of the interaction (the
learning phase), the robot produced a random posture (selected
from 4 basic postures and a neutral posture; see Fig. 3) for
2 s. The participant was asked to imitate the robot. This first
phase lasted between 1 and 2 min, after which the roles were
reversed. The robot then had to imitate the posture of the
participant, who led the imitation interaction.
During the first phase, the robot learns the task, but also

records all the images. Consequently, the database is created to
perform offline processing. Each image was annotated with the
response of the robot during the online learning. All the images
are correctly labeled because the participant mimics the robot’s
postures. The participants who interacted with the robot were
composed of: 11 adults (corresponding to 2000 images), 15
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‣ Social learning  (Boucenna et al. 2014) 

‣ Proposition: Evolution of computational model’s parameters inform us about the human partner
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Fig. 7. The success rate is shown for each posture for different care-
givers (adults, TD children, and children with ASD) obtained during natural
interaction with the robot. During the learning phase (which only lasted
2 minutes), humans imitated the robot, and then the robot imitated them.
Different caregivers interacted with the robot: 11 adults (corresponding to
2000 images), 15 TD children (corresponding to 3100 images) and 15 children
with ASD (corresponding to 3100 images). Each image was annotated with
the response of the robot during the online interaction, enabling the statistical
analyses to be performed offline.
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Fig. 8. The number of neurons needed to learn with different caregivers
(adults, TD children, and children with ASD) interacting with the robot: 11
adults (corresponding to 2000 images), 15 TD children (corresponding to 3100
images) and 15 children with ASD (corresponding to 3100 images)

postures of adults and TD children more easily than those of
children with ASD.
This result can be attributed to the higher complexity of

the visual input (i.e., the caregiver posture) when children
with ASD imitated the robot. Despite successful performance
during the imitation task, as given by the annotation score,
more variability was observed in the postures of the children
with ASD. Fig. 7-8 confirms the impact of the caregivers
on the robot learning and shows the different developmental
trajectories of the robot. The number of neurons required
by the robot and the postures recognition varied with the
characteristics of the caregivers.
Finally, we also assessed learning using normalized mu-

tual information for paired caregivers. Table II shows the

normalized mutual information used to measure the agree-
ment between two clusters belonging to two groups. The
NMI measured the similarity between the two groups. The
NMITDvs.Adult between the TD children and the adults was
0.57. The NMIASDvs.Adult between the children with ASD
and the adults was 0.6. The NMITDvs.ASD between the TD
children and the children with ASD was 0.62. The results
reinforce previous results (Fig. 7), enabling us to draw the
following conclusions: (1) age affects learning because the
NMI for both groups of children differed substantially from
that for the adult group, though the same number of neurons
were needed for learning with the TD children as for the
adults; and (2) a pathological effect also contributes to learning
because the NMI between the TD children and the children
with ASD was far from 1.

TD/ASD TD/adult ASD/adult
NMI 0.622 0.570 0.603

TABLE II
NMI (NORMALIZED MUTUAL INFORMATION), WHICH MEASURES THE

AGREEMENT BETWEEN TWO CLUSTERS BELONGING TO TWO
POPULATIONS AND SHOWS THE SIMILARITY BETWEEN THE TWO

POPULATIONS

C. Does first partnership (ASD vs. TD) during the learning
phase influence robot learning?
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Fig. 9. Number of neurons needed to learn during the learning phase, which
were obtained by testing two conditions: 1) the robot interacted with TD
children, followed by children with ASD and 2) the robot interacted with
children with ASD, followed by TD children.

Two cases were tested to assess this issue. In the first case,
the robot interacted and learned first with the TD children,
followed by interacting and learning with the children with
ASD. In the second case, the robot interacted and learned
first with the children with ASD, followed by interacting and
learning with the TD children. Fig. 9 shows the number of
neurons needed to learn during the learning phase. In both
cases, the curve varies significantly when the robot started to
interact with the second group (p < 0.05). The results show

Evolution of parameters for differents 
groups during learning

p<0.05 (Chow test)

7

Average

 s
uc

ce
ss

 r
at

e 
(%

)

Fig. 7. The success rate is shown for each posture for different care-
givers (adults, TD children, and children with ASD) obtained during natural
interaction with the robot. During the learning phase (which only lasted
2 minutes), humans imitated the robot, and then the robot imitated them.
Different caregivers interacted with the robot: 11 adults (corresponding to
2000 images), 15 TD children (corresponding to 3100 images) and 15 children
with ASD (corresponding to 3100 images). Each image was annotated with
the response of the robot during the online interaction, enabling the statistical
analyses to be performed offline.
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Fig. 8. The number of neurons needed to learn with different caregivers
(adults, TD children, and children with ASD) interacting with the robot: 11
adults (corresponding to 2000 images), 15 TD children (corresponding to 3100
images) and 15 children with ASD (corresponding to 3100 images)

postures of adults and TD children more easily than those of
children with ASD.
This result can be attributed to the higher complexity of

the visual input (i.e., the caregiver posture) when children
with ASD imitated the robot. Despite successful performance
during the imitation task, as given by the annotation score,
more variability was observed in the postures of the children
with ASD. Fig. 7-8 confirms the impact of the caregivers
on the robot learning and shows the different developmental
trajectories of the robot. The number of neurons required
by the robot and the postures recognition varied with the
characteristics of the caregivers.
Finally, we also assessed learning using normalized mu-

tual information for paired caregivers. Table II shows the

normalized mutual information used to measure the agree-
ment between two clusters belonging to two groups. The
NMI measured the similarity between the two groups. The
NMITDvs.Adult between the TD children and the adults was
0.57. The NMIASDvs.Adult between the children with ASD
and the adults was 0.6. The NMITDvs.ASD between the TD
children and the children with ASD was 0.62. The results
reinforce previous results (Fig. 7), enabling us to draw the
following conclusions: (1) age affects learning because the
NMI for both groups of children differed substantially from
that for the adult group, though the same number of neurons
were needed for learning with the TD children as for the
adults; and (2) a pathological effect also contributes to learning
because the NMI between the TD children and the children
with ASD was far from 1.

TD/ASD TD/adult ASD/adult
NMI 0.622 0.570 0.603

TABLE II
NMI (NORMALIZED MUTUAL INFORMATION), WHICH MEASURES THE

AGREEMENT BETWEEN TWO CLUSTERS BELONGING TO TWO
POPULATIONS AND SHOWS THE SIMILARITY BETWEEN THE TWO

POPULATIONS

C. Does first partnership (ASD vs. TD) during the learning
phase influence robot learning?
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Fig. 9. Number of neurons needed to learn during the learning phase, which
were obtained by testing two conditions: 1) the robot interacted with TD
children, followed by children with ASD and 2) the robot interacted with
children with ASD, followed by TD children.

Two cases were tested to assess this issue. In the first case,
the robot interacted and learned first with the TD children,
followed by interacting and learning with the children with
ASD. In the second case, the robot interacted and learned
first with the children with ASD, followed by interacting and
learning with the TD children. Fig. 9 shows the number of
neurons needed to learn during the learning phase. In both
cases, the curve varies significantly when the robot started to
interact with the second group (p < 0.05). The results show

Changing group during learning

p<0.05 (Chow test)

p<0.05 (Chow test)
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‣ Joint attention (Anzalone et al. 2014) 

‣ Proposition: How to extract social cues of joint attention during interaction?

Anzalone et al. : How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D+time) 
environment during a joint attention induction task with a robot. Research in Autism Spectrum Disorders (2014)



Conclusions
‣ Modeling and characterizing human communication dynamics

‣ Robot is employed as a tool for both stimulation and clinical investigation

‣ New ways to study social interactions
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Ques.ons?

MICHELANGELO
New technology to help 

children with Autism

The MICHELANGELO project intends 
to bring the assessment and the 
therapy of the autism out of the 
clinical environment and 
develop a patient-centric 
home-based intervention 
requiring a minimal 
human involvement 
and therefore 
extremely cost 
e!ective.
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