VERTICAL OSCILLATION OF THE HIP TO WALK WITHOUT THINKING

C. Chevallereau, Y. Aoustin

Context

- Optimal gait with respect to energy consumption
 - The control law will stabilize the motion
 - Sagittal walking: Rabbit, simple control law
 - 3D walking: more complex control
- Computational Morphology [Pfeiffer 2007]
- The gait can/must be chosen to solve the control difficulties

Simplified Model for walking

- Effect of gravity
- Small size of the foot : limited torque at ankle
- Free inverted pendulum

Figure extraite de [Kajita et al. 2009]

- Length of the pendulum may varie
- Instantaneous double support phase

 [Kajita et al. 2009]S. Kajita, H. Hirukawa K. Harada, K. Yokoi, Introduction à la commande des robots humanoïdes, De la modélisation à la génération du mouvement, Traduit et adapté du japonais par Sophie Sakka, 2009, Springer-Verlag France

Vertical motion of the CoM

- Constant vertical height of CoM : LIP3D
 - Very popular model for walking of humanoid
 - Linear equation for the CoM evolution
 - Decoupling between sagittal and frontal plane
 - Independent from time
 - Use on line when the desired foot position are defined

A predictive control is used

Proposal : Vertical Oscillations

- Vertical height of CoM is imposed
- The height is function of x and y, z=f(x,y)
- Example : sum of sinusoidal functions of x and y
- Inspired from human walk
- Compatible with workspace of the legs

WALKING IN SAGITTAL PLANE

Support phase

- Control objective: z=f(x)
- Transitions : x varies from x⁺ to x⁻
- Gravity acts via angular momentum

(-)

From x^+ to 0, decreases From 0 to x-, increases

 Change of along a support depends on z=f(x), from x⁺ to x⁻

Change of support

 Change of the point where angular momentum is calculated

Cyclic Walking

- Same at the beginning of steps k and k+1
 - () ()) • () —
- Unique velocity
- If δ <1, stable or attractive walking
 - decreases at change of support
 - increases during support
 - |>| |>| |, CoM is in front of the foot(dS>0)
 - Minimal initial velocity (0)>0

Example

- S=0.3;
- ds=0.01;

 δ = 0.9237 (stable) Cycle :) = 1.0358 To achieve a step) > 0.6890

We can chose dS to modify the duration of step

s

Control of Rabbit

- Complete model of the robot
- Joint evolution is function of $\boldsymbol{\theta}$
- Virtual constraints
- Oscillations of CoM (z=f(x))

Conclusions

- Change of angular momentum at support change is important
 - Velocity of the CoM must be directed downward in double support
 - Unique stable walking velocity
- Control objective: insure coordination of posture
 - z(x,y)
 - Change of support
- Choice of the gait produces « robust walking »

Perspectives, Simplified model

- Extendion to frontal plane and synchronization in 3D
- Define non cyclic walking
 - Change of stride, lateral distance, Change of velocity, Start, Stop
 - Use of basin of attraction, transition steps, change of the pose of the legs
- Change in the walking direction

Ching-Long Shih, J. W. Grizzle, and Christine Chevallereau, From stable walking to steering of a 3D bipedal robot with passive point feet, Robotica 2012

Introduction of double support

Perspectives, Complex model

- Extension to complete dynamic model:
 - Joint reference trajectory expressed as function of x and y
 - Study of the Hybrid zero dynamics
- Use of the simplified model to replace the LIP3D model
 - Prediction of the CoM evolution
 - Use of the inverse kinematic model to define the desired joint configuration
 - Resolved angular momentum control neglected in the model, ...

