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Our research interest

• Exploring tasks at human environments.
• Assistive robotics.
• Certain degree of complexity and abstraction.
• Feasible solutions.
• Exploration of the concept of embodiment.
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Embodiment

• Real-world thinking occurs in particular situations with
specific practical ends.

• Sensory and motor functions are relevant aspects of intelligent
behavior.

• Cognition is a distributed process.
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What is the task to be solved?
To approach objects in the scene using vision:

• Converging to a desired 2D pose by following planar motion.

• Three degrees of freedom task.
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What are the available resources?

Table: Resources available to solve the task.

Type Resource
Brain
(models and
algorithms)

Object representation
Top-down feature attention
Ego-centered stimuli reference

Body Proprioception
Vision
Motion primitives

Environment Planar surface for motion
Static objects
Human supervisor
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How are does the agent solve the task?

B: Ego-
localization

A: Object
tracking

C: Predictive
motion

Environment Body Brain

Task

Figure: Relationship between available resources and the task.
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Challenging

Certain difficulties are reported when using on-board visual
systems:

• Limited control over the head’s direction [1].
• Sway motion for continuous visual servoing [2].
• Delays in visual feedback [3].
• Physiological evidence suggests considerable delays in the
human visuo-motor (e.g. 130 ms for ocular-motor)[4].
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Computational visual tracking

The tracking behavior assumes:
• Robust color-based object segmentation.
• No relation between successive frames.
• Intermittent control.
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Markof Random Fields

The label of interest ϕ̂ is the one that maximizes the a posteriori
probability P(ϕ | F ) :

arg maxϕ∈Φ
∏
s∈I

P(fs | ϕs)P(ϕ), (1)

where F = {fs | s ∈ I}, and Φ is the set of possible labellings.

H. Ferreira Chame and C. Chevallereau ECN - IRCCyN - CNRS 12/48



Introduction
Embodiment

Object tracking
Ego-localization

Predictive motion
Results

Conclusions

Challenging
Design criteria
Markov Random Fields

Markof Random Fields
Singleton and doubleton cost

C(ϕ,F ) = S(ϕ,F ) + D(ϕ) (2)

Cliques

Figure: First-order neighborhood system. Single pixel cliques are called
singletons, horizontal and vertical cliques are called doubletons [5].
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Markof Random Fields

A multivariate normal distribution can be considered as the
singleton contribution, such as

fx(x1, ..., xk) =
1√

2πk |Σ|
exp

(
−1
2(x − µ)tΣ−1(x − µ)

)
(3)

Resulting in the Kato et al. proposal[5]

S(ϕ,F ) =
∑
s∈S

ln(
√

(2π)3|Σϕs |)+
1
2((fs−µϕs )Σϕs

−1(fs−µϕs )t) (4)
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Markof Random Fields

Homogeneity of labeling determines the doubleton cost [6]

D(ϕ) = β
∑
{s,r}∈N

(1− δ(ϕs , ϕr )), (5)

where the function δ(a, b) is known as the “Kronecker delta
function” such as

δ(a, b) =

{
1 if a = b
0 if a 6= b (6)
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Markof Random Fields

Supervised segmentation:

Figure: On the left, the user selects the region from where the color
model will be built, in other words P(fs | ϕs). On the right a
segmentation ϕ obtained.
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Computational paradigm limitations

Color model segmentation is not enough:
• Robot motions can cause the object to leave the field of vision.
• High chance of confounding similar objects in the scene.
• Enriching the model may not solve the problem.
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Embodied design principle

Figure: Projection of blob’s center on the ego-space. The red dot corresponds to the prediction.
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Figure: Representation of the ego-localization. a) Movable base frame B.
b) Representation of the ego-cylinder. P =

[
ρ θ z φ

] t.
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Sensory ego-cylinder
Localization
Cylindrical container

Task Frames

B

H

C

O r

Figure: Definition of the reference frames to solve the localization task.
In the image, B corresponds to the base frame, H to the head frame, C
to the camera frame, and O to the object frame.
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Localization

The object’s pose can be known with respect to the base frame B
through the definition of the homogeneous transformation matrix

BTO = BTH(q)HTC
CTO, (7)

A pose P in the ego-cylinder is calculated from BTO and is given by

P =
[
ρ θ z φ

]
t. (8)
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Localization

The transformation CTO expresses the object frame O in frame C ,
and is determined from the 3D pose

CO =
[
ζ ω

]t
=
[[

x y z
] [

γ β θ
]]t

, (9)
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Figure: Definition of the cylindrical container object model. a) 3D
representation of the object frame O and the definition of four points of
interest. b) Segmented blob and image features defined from the oriented
bounding box.

H. Ferreira Chame and C. Chevallereau ECN - IRCCyN - CNRS 24/48



Introduction
Embodiment

Object tracking
Ego-localization

Predictive motion
Results

Conclusions

Sensory ego-cylinder
Localization
Cylindrical container

Cylindrical container
Depth estimation
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Figure: Estimation of the object’s depth. a) The model assumes
COθ = 0 in (9), b) XZ visualization of the scenario where the
circumference corresponds to an ellipse and the distance from the
projective ray and the center O is larger than r .
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Cylindrical container

Thus, the position component COζ in (9) is given by

COζ =
[
Mx My Mz + r

]t
, (10)

where M = mean(CL,CR).
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The orientation component COω in (9) is obtained from the
relation between CR, CL, CU, and CO. It is extracted from the
rotation matrix

CR =
[
s n a

]
=
[
Ĥ V̂ (Ĥ × V̂ )

]
, (11)

with Ĥ = (CR − CL)/|CR − CL|, and V̂ = (CU − CO)/|CU − CO|.
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Figure: Initial and desired pose of frame B.
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The transformation BTB∗ between the mobile frame B and the
desired location B∗

BTB∗ = BTO
OTB∗ , (12)

The transformation OTB∗ is defined by demonstration.
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A difference in location Bd is obtained from BTB∗ . A direction of
motion M̄ can be defined as follows

BM̄ = sat(Bd , λ), (13)

where sat is a saturation function to λ thresholds.
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A prediction BP̂k+1 can be calculated such as

BP̂k+1(Pk , M̄) =


√
ρ2 − 2cρρ̄+ ρ̄2

atan2(−ρs, ρc − ρ̄)
z

φ− φ̄

 , (14)

with c = cos(θ − φ̄), s = sin(θ − φ̄), Pk is the current location, M̄
is a direction of motion, and ( ¯ ) denoting the elements of M̄.
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The tracking algorithm

The segmentation routine consisted in a customization of the MRF
supervised technique

• Computational complexity ς = O(n2), for n pixels, and
|Φ| = 2 labels.

• Images were processed in the YUV color-space, so |η| = 3.
• No background model is used.
• Reasonable performance for naturally illuminated scenes.
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The tracking algorithm

Algorithm 1 Segmentation
1: procedure doSegmentation
2: ϕ̂(i, j)← Initialize() . Singleton initialization
3: eOld ← 0
4: repeat
5: e ← 0
6: for i = 0→ i < height do
7: mine ← localEnergy(i, j, ϕ̂(i, j))

8: for j = 0→ j < width do
9: for λ = 0→ λ < |Φ| do
10: ce ← localEnergy(i, j, λ) . current energy
11: if ce < mine then
12: ϕ̂(i, j)← λ

13: mine ← ce
14: e ← e + mine
15: ∆e ← abs(eOld − e)

16: eOld ← e . stop when the change is too small
17: until ∆e > t

H. Ferreira Chame and C. Chevallereau ECN - IRCCyN - CNRS 35/48
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The simulation environment

The simulated scene

Figure: The approach task modeled in Webots. On the left, the robot’s
original pose. In the center, the followed path. On the right, the desired
pose with respect to the red can on the table
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Multiple objects in the scene

Figure: Top-down feature attention testing. On the left, the robot’s
original pose. In the center, the on-board view of the frame on the left.
On the right, the trajectory followed. Despite the number of red cans,
the agent was able to track the one on the top of the table.
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Egocentric trajectory evolution
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Figure: XY egocentric visualization. The circumference represents the
ego-cylinder. In red the real values, in green the estimations. Distances
are expressed in m.
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Figure: Evolution of the localization error between estimations e and
measurements m.
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Card approach

Let’s watch the video!
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Thea can approach

(a) (b)

Figure: On-board view of the second experimental task where the robot
approached a tea can. a) Some of the captured images of the scene. b)
Corresponding unfiltered segmentations.
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Conclusions

• First person perspective analysis for problems in assistive
robotics.

• Task subdivision intro three sequential steps: object tracking,
ego-localization, and predictive motion.
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• The MRF formalism ensured reasonably robust color-based
segmentation.

• The top-down feature attention mechanism was crucial to
discriminate between similar objects.
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Conclusions

• The ego-localization representation seemed to be adequate.
• A sequential look-then-move policy appears to be sufficient to
perform the task.
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Conclusions

• Despite the simplicity of the models and the perturbations
involved, the agent was able to accomplish the task.

• This work argued in favor of analyzing the task from the
perspective of embodiment, while including simple
computational models to ensure more general solutions to
assistance robotics problems.
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Thank you very much!

H. Ferreira Chame and C. Chevallereau ECN - IRCCyN - CNRS 47/48



References

P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided humanoid footstep planning for dynamic
environments,” in Proceedings of the IEEE-RAS Conference on Humanoid Robots (Humanoids’05), pp. 13 –
18, December 2005.

C. Dune, A. Herdt, O. Stasse, P. B. Wieber, K. Yokoi, and E. Yoshida, “Cancelling the sway motion of
dynamic walking in visual servoing,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3175–3180, 2010.

A. Moughlbay, E. Cervera, and P. Martinet, “Model based visual servoing tasks with an autonomous
humanoid robot,” in Frontiers of Intelligent Autonomous Systems (S. Lee, K.-J. Yoon, and J. Lee, eds.),
vol. 466 of Studies in Computational Intelligence, pp. 149–162, Springer Berlin Heidelberg, 2013.

R. C. Miall, D. J. Weir, D. M. Wolpert, and J. F. Stein, “Is the cerebellum a smith predictor?,” Journal of
motor behavior, vol. 25, pp. 203–216, Sept. 1993.
PMID: 12581990.

Z. Kato, T.-C. Pong, and J. Chung-Mong Lee, “Color image segmentation and parameter estimation in a
markovian framework,” Pattern Recognition Letters, vol. 22, pp. 309–321, Mar. 2001.

J. Besag, “On the Statistical Analysis of Dirty Pictures,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 48, no. 3, pp. 259–302, 1986.


	Introduction
	Embodiment
	Task analysis

	Object tracking
	Challenging
	Design criteria
	Markov Random Fields

	Ego-localization
	Sensory ego-cylinder
	Localization
	Cylindrical container

	Predictive motion
	Results
	The tracking algorithm
	The simulation environment
	Experiments

	Conclusions

