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Hybrid systems

Autonomous-switching
hybrid system

Continuous-controlled (O O O)
Hybrid Systems autonomous-switching

hybrid O (OO O

Autonomous-impulse
hybrid system

Systems with unilateral constriants (Brogliato, 1996)
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Disturbances

= Friction
= External forces
* Uneven ground
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Disturbance attenuation
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Disturbance attenuation

kl

0=x"(AJP + PAc.+ Ric+ 7. PD.DIP — PS.P)x

Ue = Po(x) = —R;BEP,Y

Continuous disturbance attenuator

Trés difficile!!

Haddad et al. (2005) 8



General Objective

* Address the problem of disturbance attenuation for
mechanical systems under unilateral constraints

* Consider bounded exogeneous disturbances on
e position measurements

e continuous phase

e impact phase.

* Avoid the use of impulsive inputs

* Consider that we may only have position measurments
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Problem statement

* Consider the nonlinear mechanical system

].{1 = X3
X9 = P(x1.X9.1) + ¥1(x1. X0.1)W + Po(x1.X9.1)u
(1)
z = hy(x1,%2,t) + ky2(x1,%32,t)u (2)
v = ho(xy,x9.t) + ko1(x1.X0.t)W (3)

X2 |1

X (tF) = xa (t])
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Continuous
dynamics
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Measurements

Discrete
dynamics
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-attenuator

Asymptotical Disturbance
Stability Attenuation
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Disturbance attenuation with




Local space-state solution

* The subsequent local analysis involves the linear -
control problem for the system within the impact free

intervals ( )
% = A(t)x + By (t)w + Ba(t)u, (20)
z = Cy(l)x+ Dya(t)u, (21)
y = Ca(l)x + Da1(t)w, (22)
() — , O ) O ) O — 5, ) —

() C ) O C ).



Local space-state solution

The output feedback consist of:

Robust State Observer

(K |[=cHr o oo o ]

Feedback law
() ) Gain Matrices obtained

o from optimization !!

And it is a local solution of the =~ -control problem for
the nonlinear system (1)-(5)
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Local space-state solution

( )and () are bounded, symmetrical, positive definite
solutions of the differential Riccati equation system

—P.(t) =P.(t)A(t) + A" (HP.(t) + Cy ' (1)Cy (1)

1
+P. {f}[ﬁ-ElElT - BEEET](ﬂpﬁ ':"F} + =1
They are only dependent of the trajectory, so if it is

known, and can be calculated a priori

Z.(t)=A.()Z.(t) + Z.(HA] (1) + B1(t)B1 " (1)
+E._-|[t][%PEB1B2TPE — Ca ' Ca|(t)Z.(t) + <1

with A.(t) = A(t) + =Ba(t)By (1)P.(t)
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Example

Tracking of a Mass-spring-dan
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Simulation results

The simulation shown was performed using Matlab
and the parameters from the table:

£

Param | Value Param | Value

k 10 N/m | p 1

b 1 N/m/js | € 0.01

m 1 kg w? 0.2q2 m/s

e 0.5 wy 0.1gz + 0.1sign(g2) NV
Pp 1 wo 0.1sin(1.5¢) m

q(ta) 0.2 m g(to) 0.8 m/s

£1(t 0 m £a(tn) 0.8 m/s
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Simulation results

Undisturbed System Disturbed System
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t [sed t[sec

The system tracks the desired trajectory in a sound manner despite the disturbances
affecting both the free-motion (coulomb friction) and transition phases (deviation
from restitution coefficient), as well as disturbances in the position measurement,

while asymptotically stabilizing the error for the undisturbed system.
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Behavior of the velocity filter
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Fig. 3. L2-gain behavior for v = 2: || z||7, +||2°||%, (solid line)
vs. V2 [llwl|i, + lwd ] + Ei_oBk (dashed line). S



Case Study

Periodic Tracki

position fee
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Biped’s Hybrid Model

Single support phase Impact phase

J\, } A \\A‘//
C () () C )
) ()
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Disturbances in the model
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| Model of the biped robot

.r!'-'|:|
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Assumptions
Single support phase:

e Flat foot contact of the stance foot with the ground (i.e.
there is no take off, no rotation, and no sliding during
this phase)

Impact phase

e Flat foot contact of the swing foot with the ground, the
double support phase is instantaneous and it can be
modeled through passive impact equations
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Model of the biped robot

* Thus, we have a model of the form
Free-motion phase:

() c )y ()
()
Transition phases:
c) ()
) (CHCHYy )

( ()

( ) represents the height of the swing foot

27
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Motion planning

Desired trajectory ()

The trajectory:
d Minimizes an energetic criteria
J Ensures cyclic walking

29



UNIVERSITE DE NANTES

Error
variables

Prefeedback ( () ( ( ))

F(x, t) = [ - ]
(x. 1) D Yx; +q)[-H(x; +q°,x2 +q7) + H{x; + q".§")]
Error system 0
gl{x1t] = |: D_]'l:x]_ + qr:l ] 1

0 .
galx.t) = [ g ] chy(x) = { PpX1 } Ckya(x) = } .

PeXa

= =

ha(x) = pal 0] kar(x)=[1 0],

X1
o(q")q" — o(x1 + q")(xz +47) |
Wednesday, July 02, 2014 Fix.t) = Fy(xy +q7)., wi(x,t)=-1I

pix, 1) = [
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Methodology

—P.(t) = P.(1)A(t) + AT (t)P.(t) + C1 " (t)Calt)

: : 1
Differential +P.(t)[5B1B: " — BaB;y "|(1)P.(t) + <1

Riccati Z.(t) = A ()2, (t) + Z. (AT (t) + By (t)By " (1)

Equations

1
+Z.(t)[P.B2By ' P. — Cy ' Ca|(t)Z.(t) + <1

() |- ¢ ) ()(()])()

) O

Wednesday, July 02, 2014

()
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Numerical Tests

The robustness of the tracking control is verified by
introducing a disturbance force applied on the
hip in the horizontal plane.

e Such a force is used for the duration of 0.07 s to simulate a
disturbance effect.

The contact with the ground is stated as a linear
complementary constraint problem and solved with a
constrained optimization

The measurements are disturbed with a constant

33



Numerical results

Height of left foot

Metres

Feet heights in the walking gait
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Numerical Results
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Comparisson against a PD controller

A PD controller was designed to compare against our
design

The Parameters of the controller were selected solving
a pair of time-independent Riccati equations, thus
making a fair comparisson

A persisten disturbance force of

() was applied to the hip of the
biped
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Future work

Extension of this results to the 3D scenario,

e implies more degrees of freedom, thus implying more
difficulties to obtain a stable walking gait.
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