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Features

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

implementation of a data-flow,
control of the graph by python scripting,
task-based hierarchical control,
portable: tested on HRP-2, Nao, Romeo.
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Features

Motion generation: the general problem

Non-linear problem


min f (q(t),v(t))
g(q(t),v(t)) < 0
h(q(t),v(t)) = 0



M1(q)q̈ + N1(q, q̇)q̇ + G1(q) = T1(q)u + C>
1 (q)λ Actuated dynamics of the robot

M2(q)q̈ + N2(q, q̇)q̇ + G2(q) = C>
2 (q)λ Underactuated dynamics of the robot

g( λ) ≥ 0 General balance criteria

umin < u < umax Torques limits

q̂min < q̂ < q̂max Joints limits

d(Bi(q),Bj(q)) > ε, ∀p(i , j) ∈ P (self-)collisions

t

CoM

q̂

Balance (under-actuated part)

GIK A general problem on the time window
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Applications
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Applications

Applications with several features
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Rigid body B

Rigid body B

Configuration represented by an homogeneous matrix

MB =

(
RB tB

0 0 0 1

)
∈ SE(3)

RB ∈ SO(3)⇔ RT
BRB = I3

Point x ∈ R3 in local frame of B is moved to y ∈ R3 in
global frame: (

y
1

)
= MB

(
x
1

)
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Rigid body B

Rigid body B

Velocity represented by (vB, ωB) ∈ R6 where

ṘB = ω̂BRB

and

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


is the matrix corresponding to the cross product operator
Velocity of point P on B

vp = ṫB + ωB × ~OBP

where OB is the origin of the local frame of B.
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Configuration space

Configuration space

Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

Position of Bi depends on q:

MBi (q) ∈ SE(3)
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Velocity

Velocity

Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6
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Task

Task

Definition: function of the
robot configuration,
time and
possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

Example: position tracking of an end-effector Bee
M(q) ∈ SE(3) position of the end-effector,
M∗(t) ∈ SE(3) reference position

T (q, t) =
(

t(M∗−1(t)M(q))
uθ(R∗−1(t)R(q))

)
where

t() is the translation part of an homogeneous matrix,
R and R∗ are the rotation part of M and M∗.
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Hierarchical task based control

Hierarchical task based control

Given
a configuration q,
two tasks of decreasing priorities:

T1 ∈ C∞(C × R,Rm1),
T2 ∈ C∞(C × R,Rm2),

compute a control vector q̇
that makes T1 converge toward 0 and
that makes T2 converge toward 0 if possible.
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Hierarchical task based control

Hierarchical task based control

Jacobian:
we denote

Ji =
∂Ti
∂q for i ∈ {1,2}

then
∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti

∂t (q, t)

We try to enforce
Ṫ1 = −λ1T1 ⇒ T1(t) = e−λ1tT1(0)→ 0
Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0
λ1 and λ2 are called the gains associated to T1 and T2.
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Ṫ2 = −λ2T2 ⇒ T2(t) = e−λ2tT2(0)→ 0

λ1 and λ2 are called the gains associated to T1 and T2.

O. Stasse, JNRH-CAR 2014 – 15/57 The Stack of Tasks: whole body humanoid robot control



Introduction Theoretical foundations Software

Hierarchical task based control

Hierarchical task based control

Jacobian:
we denote

Ji =
∂Ti
∂q for i ∈ {1,2}

then
∀q ∈ C,∀t ∈ R,∀q̇ ∈ Rn, Ṫi = Ji(q, t)q̇ + ∂Ti
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Hierarchical task based control

Moore Penrose pseudo-inverse

Given a matrix A ∈ Rm×n, the Moore Penrose pseudo inverse
A+ ∈ Rn×m of A is the unique matrix satisfying:

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

Given a linear system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

x = A+b minimizes
‖Ax − b‖ over Rn,
‖x‖ over argmin‖Ax − b‖.
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Hierarchical task based control

Hierarchical task based control

Resolution of the first constraint:

Ṫ1 = J1q̇ +
∂T1

∂t
= −λ1T1 (1)

J1q̇ = −λ1T1 −
∂T1

∂t
(2)

q̇1 , −J+
1 (λ1T1 +

∂T1

∂t
) (3)

Where J+
1 is the (Moore Penrose) pseudo-inverse of J1.

q̇1 minimizes
‖J1q̇ + λ1T1 +

∂T1
∂t ‖ = ‖Ṫ1 + λ1T1‖

‖q̇‖ over argmin ‖J1q̇ + λ1T1 +
∂T1
∂t ‖

Hence,
if λ1T1 +

∂T1
∂t is in Im(J1), (1) is satisfied
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Hierarchical task based control

Hierarchical task based control

In fact
∀u ∈ Rn, J1

(
q̇1+(In − J+

1 J1)u
)
= J1q̇1

therefore,
q̇ = q̇1 + (In − J+

1 J1)u

also minimizes ‖J1q̇ + λ1T1 +
∂T1
∂t ‖.

P1 = (In − J+
1 J1) is a projector on J1 kernel:

J1P1 = 0
∀u ∈ Rn, if q̇ = P1u, then, Ṫ1 = ∂T1

∂t .
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Hierarchical task based control

Controlling the second task

We have

q̇ = q̇1 + P1u

Ṫ2 = J2q̇ +
∂T2

∂t

Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want

Ṫ2 = −λ2T2

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t
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Ṫ2 = J2q̇1 +
∂T2

∂t
+ J2P1u

We want
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Ṫ2 = −λ2T2

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

O. Stasse, JNRH-CAR 2014 – 19/57 The Stack of Tasks: whole body humanoid robot control



Introduction Theoretical foundations Software

Hierarchical task based control

Controlling the second task

Thus

−λ2T2 = J2q̇1 +
∂T2

∂t
+ J2P1u

J2P1u = −λ2T2 − J2q̇1 −
∂T2

∂t

u = −(J2P1)
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∂T2

∂t
)
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= q̇1 − P1(J2P1)
+(λ2T2 + J2q̇1 +
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Hierarchical task based control

Advanced formulation

Inverse Dynamics
Weighted Pseudo-inverse

Faster (!?) computation
Easier to formulate
Do not guarantee convergence
Difficulty to tune the weights
Do not handle properly inequalities

Hierarchical Quadratic Program
Slower (!?) computation time
Warranty on priority
Handle easily inequalities
Difficult to formulate (here hidden in the solver)
Known problems with cycles and singularities management
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Applications

Example: Human-humanoid robot interaction

Stack of
 TasksTeleoperator

Teleoperation

Input

Motion

Upper−body

Compliant 

CoM

body
Upper

Gaze

Legs

Force

Footstep Planning

Force Input 

Force

Sensor

Input

Walking Pattern Generation
Real−Time 

Fast Foot

Planning

CoM/ZMP Trajectories

...

Based

Position

Control
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Applications

ROBOT@CWE
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Outline

1 Introduction
Features
Applications

2 Theoretical foundations
Rigid body B
Configuration space
Velocity
Task
Hierarchical task based control
Applications

3 Software
Architecture overview
Libraries
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Architecture overview

Software structure - Conceptual view

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

Python

IOR

ROS
: SoT Entity

: C++ server

: Process/Task
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Architecture overview

Software structure - Repositories

Robot

Dyn Feature

TaskSolver

WPG

Desired
Feature

sot-hrp2

sot-dynamics sot-core

sot-core

sot-dyninv
sot-core

sot-dyninv

sot-core

sot-pattern-generator

IOR

sot-hrp2-hrpsys
sot-hrprtc-hrp2
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Architecture overview

Architecture overview

-jrl-mal

-jrl-dynamics
-abstract-robot-dynamics

-jrl-mathtools

libraries

dynamic-graph

-entity
-signal
-command

-pool
-factory

dynamic-graph-python

-bindings
-remote interpreter

sot-core

-solvers
-feature

-task

sot-dynamic

-forward kinematics
-inverse dynamics

sot-pattern-generator

-walk motion generation

sot-hrp2 sot-romeo sot-nao

sot-hrprtc-hrp2

} abstract
controllers

} immersion into
robot controller

-Robot

dynamic-graph-tutorial

-inverted pendulum

-jrl-walkgen

sot-tools

-helper tools

sot-hrp2-hrpsys

OpenHRP-3.1 OpenHRP-3.0

dynamic_graph_bridge

services
/run_command

/start_dynamic_graph

/stop_dynamic_graph

topics
/joint_state

from/to signals

ros-electric

sot-application

-application dependent
 initializations

O. Stasse, JNRH-CAR 2014 – 33/57 The Stack of Tasks: whole body humanoid robot control



Introduction Theoretical foundations Software

Architecture overview

Libraries

jrl-mathtools: implementation of small size matrices,
to be replaced by Eigen

jrl-mal: abstract layer for matrices,
to be replaced by Eigen

abstract-robot-dynamics: abstraction for humanoid
robot description,
jrl-dynamics: implementation of the above abstract
interfaces,
jrl-walkgen: ZMP based dynamic walk generation.
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Libraries

dynamic-graph

Entity
Signal: synchronous interface
Command: asynchronous interface

Factory
builds a new entity of requested type,
new entity types can be dynamically added (advanced).

Pool
stores all instances of entities,
return reference to entity of given name.
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Libraries

Signal

Synchronous interface storing a given data type
output signals:

recomputed by a callback function, or
set to constant value

warning: setting to constant value deactivate callback,
input signals:

plugged by an output signal, or
set to constant value,
warning: setting to constant value unplugs,
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Libraries

Signal

Synchronous interface storing a given data type
dependency relation: s1 depends on s2 if s1 callback
needs the value of s2,

each signal s stores time of last recomputation in member
s.t

s is said outdated at time t if
t > s.t , and
one dependency s dep of s

is out-dated or
has been recomputed later than s: s dep.t > s.t .

reading an out-dated signal triggers recomputation.
New types can be dynamically added (advanced)
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Libraries

Command

Asynchronous interface
input in a fixed set of types,
trigger an action,
returns a result in the same set of types.
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Libraries

dynamic-graph-python

Python bindings to dynamic-graph

module dynamic graph linked to
libdynamic-graph.so

class Entity
each C++ entity class declared in the factory generates a
python class of the same name,
signals are instance members,
commands are bound to instance methods
method help lists commands
method displaySignals displays signals

class Signal
property value to set and get signal value

remote interpreter to be embedded into a robot controller
(advanced)
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Libraries

dynamic-graph-tutorial

Simple use case for illustration
Definition of 2 entity types

InvertedPendulum
input signal: force
output signal: state

FeedbackController
input signal: state
output signal: force
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Libraries

dynamic-graph-tutorial

>>> from dynamic graph.tutorial import InvertedPendulum, FeedbackController
>>>

a = InvertedPendulum (’IP’)
>>> b = FeedbackController (’K’)
>>> a.displaySignals ()
--- <IP> signal list:
|-- <Sig:InvertedPendulum(IP)::input(double)::force (Type Cst) AUTOPLUGGED
‘-- <Sig:InvertedPendulum(IP)::output(vector)::state (Type Cst)
>>> a.help ()
Classical inverted pendulum dynamic model

List of commands:
-----------------
getCartMass: Get cart mass
getPendulumLength: Get pendulum length
getPendulumMass: Get pendulum mass
incr: Integrate dynamics for time step provided as input
setCartMass: Set cart mass
setPendulumLength: Set pendulum length
setPendulumMass: Set pendulum mass

>>> a.help (’incr’)
incr:

Integrate dynamics for time step provided as input

take one floating point number as input

>>>
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dynamic-graph-tutorial

Package provides
C++ code of classes InvertedPendulum and
FeedbackController,

explanation about how to create a new entity type in C++,
information about how to create a command in C++,
information about how to create a python module defining
the bindings in cmake,
python script that runs an example.
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sot-core

Class FeatureAbstract
function of the robot and environment states

position of an end-effector,
position of a feature in an image (visual servoing)

with values in a Lie group G (SO(3), SE(3), Rn,...),
with a mapping e from G into Rm such that

e(0G) = 0
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Feature

When paired with a reference, features become tasks.
Example

error

errordot

jacobian

Jq
value

FeaturePoint6d

reference

FeaturePoint6d

velocity

position

position

error = e (value.position	reference.position)
errordot: derivative of error when value.position
is constant.
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Task

Collection of features with a control gain,
implements abstraction TaskAbstract

error

errordot

jacobian

feature 1

error

errordot

jacobian

feature n

error

errorTimeDeriv

jacobian

TaskcontrolGain

damping

controlSelec

task

task = −controlGain.error

O. Stasse, JNRH-CAR 2014 – 45/57 The Stack of Tasks: whole body humanoid robot control



Introduction Theoretical foundations Software

Libraries

Solver SOT

Hierarchical task solver

computes robot joint velocity
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sot-dynamic

dynamic graph.sot.dynamics.Dynamic builds a
kinematic chain from a file and

computes forward kinematics
position and Jacobian of end effectors (wrists, ankles),
position of center of mass

computes dynamics
inertia matrix.
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sot-pattern-generator

dynamic graph.sot.pattern generator

Entity PatternGenerator produces walk motions as
position and velocity of the feet
position and velocity of the center of mass
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sot-application

dynamic graph.sot.application

Provide scripts for standard control graph initialization
depends on application: control mode (velocity,
acceleration)
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Packages specific to robots

sot-hrp2

defines a class Robot that provides
ready to use features for feet, hands, gaze and center of
mass,
ready to use tasks for the same end effectors,
an entity Dynamic,
an entity Device (interface with the robot control system)

sot-hrprtc-hrp2

provide an RTC component to integrate sot-hrp2 into the
robot controller.
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Utilities

dynamic graph.writeGraph (filename): writes the
current graph in a file using graphviz dot format.

dynamic graph.sot.core.FeaturePosition wraps
two FeaturePoint6d: a value and a reference,
MetaTask6d:
MetaTaskPosture:
MetaTaskKine6d:
MetaTaskKinePosture:
MetaTaskCom:
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Installation

Through robotpkg
git clone http://trac.laas.fr/git/robots/robotpkg.git
cd robotpkg
./bootstrap/bootstrap --prefix=<your prefix>
cd motion/sot-dynamic

make install
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Installation

Through github:
git clone --recursive git://github.com/jrl-umi3218/jrl-mal.git
git clone --recursive git://github.com/jrl-umi3218/jrl-mathtools.git
git clone --recursive git://github.com/laas/abstract-robot-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-dynamics.git
git clone --recursive git://github.com/jrl-umi3218/jrl-walkgen.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph.git
git clone --recursive git://github.com/jrl-umi3218/dynamic-graph-python.git
git clone --recursive git://github.com/jrl-umi3218/sot-core.git
git clone --recursive git://github.com/laas/sot-tools.git
git clone --recursive git://github.com/jrl-umi3218/sot-dynamic.git
git clone --recursive git://github.com/jrl-umi3218/sot-pattern-generator.git
git clone --recursive git://github.com/stack-of-tasks/sot-application.git
git clone --recursive git://github.com/laas/sot-hrp2.git
git clone --recursive git://github.com/stack-of-tasks/sot-hrprtc-hrp2.git

for each package,
mkdir package/build
cd package/build
cmake -DCMAKE INSTALL PREFIX=<your prefix> ..

make install
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Installation

Through installation script
git clone git://github.com/stack-of-tasks/install-sot.git
cd install-sot/scripts

./install sot.sh

O. Stasse, JNRH-CAR 2014 – 54/57 The Stack of Tasks: whole body humanoid robot control



Introduction Theoretical foundations Software

Libraries

Conclusion

Pro
Generic to put instantaneous controller together
Allow code reusability,
Real-time performance
Adapted to complex applications

Cons
The current project management needs improvment
Better binary packages support (in progress)
Eigen support (but no performance improvment to be
expected)
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Perspectives

Whole body model predictive control
Multi-core architecture
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Thank you for your attention !

We are welcoming questions, constructive feedback and help
for the Stack Of Tasks.

Thanks to the following contributors:
François Keith, Thomas Moulard, Pierre Gergondet,
Benjamin Chrétien, Antonio El-Khoury, Oussama Kannoun,
Saab Layale, Aurélie Clodic, Benjamin Coudrin, Sovannara
Hak, Sébastien Barthélémy, Maximilien Naveau.
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