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Human motion analysis : application to an industrial screwing task

L Introduction

Manual operations in car assembly lines

"Heavy" workstations Consequences
m Awkward postures to adopt » m Ergonomics
m Notable efforts to carry m Musculo-skeletal Disorders

m Short cycle time
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Human motion analysis : application to an industrial screwing task

L Introduction

Ergonomics assistance of workers

m Collaborative robots [Akella, 1999]
m Ergonomics improvements
m Dexterity
m Flexibility
m Standard Ergonomics analysis in industries
m Based on observations
m Rarely consider movement biomechanics
m Unable to qualify collaborative robots supply
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Human motion analysis : application to an industrial screwing task

L Introduction

Analysed task : under-car screwing
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Human motion analysis : application to an industrial screwing task

L Evaluation of ABLE exoskeleton

Ergonomic contribution of ABLE exoskeleton for under-car screwing
operation

Presentation of ABLE exoskeleton [Garrec, 2008]
m Designed by CEA-List

m Mono-arm exoskeleton

m 7 axes: 3 for shoulder, 2 for elbow, 2 for wrist

Tool emplacement

m Adjustable compensation levels
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L Evaluation of ABLE exoskeleton

Experimentation

Free-arm movement With exoskeleton

Measuring joint trajectories

m Motion Capture
m 6 MX Cameras, Vicon, 100Hz

m 38 markers on anatomical landmarks

P
&

SN
==

Phase critique

Trials
m Trial 1: without exoskeleton

m Trial 2: with exoskeleton, no
compensation

m Trial 3: with exoskeleton,
compensation level 1

m Trial 4: with exoskeleton,
compensation level 1
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L Evaluation of ABLE exoskeleton

Comparative analysis
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L Neuromuscular analysis

Industrial task analysis

Objectives

Inquiring criteria involved in worker’'s movement
m Analyse based on human motor control theory
m To improve standard ergonomic analysis in PSA

m To determine optimal collaborative robots

Human motor control theory

m Cost-functions minimization by the Central nervous system (SNC)
[Bernstein, 1967]

= Modelling by optimal control: jerk [Flash, 1985], torque change [Uno, 1989],
energy [Alexander, 1997] minimisation, etc...

m Limitations: No consensus between studies, the objective function need to be
determined first

Contribution

m Identifications of involved criteria by hybrid cost function optimization
[Berret, 2011]
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Human motion analysis : application to an industrial screwing task
— Method
L Modelling
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Measured joint trajectories: low wrist

movements amplitudes Retained Arm model
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— Method
L Modelling

Dynamic model of the arm

Determined by Lagrange formulation [Khalil, 1999]

r=A(8)6 +C(0,60)0 +Q(0), (1)

I : Joint torques

A(0) : Inertia matrix

C(8, 6) : Vector of Coriolis and centrifugal torques
Q(0) : Gravity Matrix
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L Method

Optimisation

Optimisation of unique criteria

Criterion Cost function? — Measured
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m Significant differences between
measured and estimated trajectories
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e m Solution: Usage of hybrid cost
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a. nis the lengths of joint angles vectors
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— Method
LOptimisation

Inverse Optimization

Retained hybrid cost functions
[Berret, 2011]

( Outer Optimization
7 ;
Find a
J= Z a;C; (2) L (Section I1.C)
i=1
v
Objecti -
JEEIE ( Inner Optimization
Find optimal values of «; that lead to Find O,
human joint trajectories \ (Section ILB)
v
Processus Ocst
Bi-level optimisation

A= RMSE (B pes; Oesr)
m Minimization of J cost-function

m Minimisation of RMSE between
measured and estimated joint angles
v

13/19



Human motion analysis : application to an industrial screwing task
L Results

Results for a typical subject [Sylla, 2014b]
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m a=[0.31.00.10.00.05.25.8]

m Important contribution of energy [Alexander, 1997] and geodesic [Biess, 2006]
criteria: workers minimize their energy expenditure, task duration, and choose the
shortest path during the screwing task.
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L Results

Relevance of Exoskeleton ergonomic compensation [Sylla, 2014c]

Free—arm movement With exoskeleton
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L Conclusion

Conclusion

Slight differences between joint angles show the relevance of using a hybrid cost
function in human motion planning

Criteria contributions during the movement, resulting from inverse optimization,
helps in determining optimal assistive device in terms of degrees of freedom and
command strategy to improve workers’ comfort

Results questions the control law of the exoskeleton

Future works:

m Performing inverse optimization to several subjects

m Analysis of the screwing movement in realistic situation with experimented workers in
factory

m Development of a new control law for personalised compensation
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