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Introduction

Manual operations in car assembly lines

”Heavy” workstations

Awkward postures to adopt

Notable efforts to carry

Short cycle time

Consequences

Ergonomics

Musculo-skeletal Disorders
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Introduction

Ergonomics assistance of workers

Collaborative robots [Akella, 1999]
Ergonomics improvements
Dexterity
Flexibility

Standard Ergonomics analysis in industries
Based on observations
Rarely consider movement biomechanics
Unable to qualify collaborative robots supply

A6-15 Cobot
Rb3d

Bodyweight Support Assist
Honda
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Introduction

Analysed task : under-car screwing
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Evaluation of ABLE exoskeleton

Ergonomic contribution of ABLE exoskeleton for under-car screwing
operation

Presentation of ABLE exoskeleton [Garrec, 2008]

Designed by CEA-List

Mono-arm exoskeleton

7 axes: 3 for shoulder, 2 for elbow, 2 for wrist

Tool emplacement

Adjustable compensation levels
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Evaluation of ABLE exoskeleton

Experimentation

Measuring joint trajectories

Motion Capture

6 MX Cameras, Vicon, 100Hz

38 markers on anatomical landmarks

Trials

Trial 1: without exoskeleton

Trial 2: with exoskeleton, no
compensation

Trial 3: with exoskeleton,
compensation level 1

Trial 4: with exoskeleton,
compensation level 1
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Evaluation of ABLE exoskeleton

Comparative analysis

c) 

Trials 

1 2 3 4 

Trials 

0,5 

1 

1,5 

0 

1 2 3 4 

C
T 

ar
m

 [N
/k

g.
m

] 

Results [Sylla, 2014a]

Low difference
of joint angles
between trials

Clear reduction
of joint torque,
particularly in
the critical phase
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Neuromuscular analysis

Industrial task analysis

Objectives

Inquiring criteria involved in worker’s movement

Analyse based on human motor control theory

To improve standard ergonomic analysis in PSA

To determine optimal collaborative robots

Human motor control theory

Cost-functions minimization by the Central nervous system (SNC)
[Bernstein, 1967]

Modelling by optimal control: jerk [Flash, 1985], torque change [Uno, 1989],
energy [Alexander, 1997] minimisation, etc...

Limitations: No consensus between studies, the objective function need to be
determined first

Contribution

Identifications of involved criteria by hybrid cost function optimization
[Berret, 2011]
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Method

Modelling

Arm Geometric Model
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Measured joint trajectories: low wrist
movements amplitudes Retained Arm model
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Method

Modelling

Dynamic model of the arm

Determined by Lagrange formulation [Khalil, 1999]

Γ = A(θ)θ̈ + C(θ, θ̇)θ̇ + Q(θ), (1)

Γ : Joint torques

A(θ) : Inertia matrix

C(θ, θ̇) : Vector of Coriolis and centrifugal torques

Q(θ) : Gravity Matrix
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Method

Optimisation

Optimisation of unique criteria

Criterion Cost functiona
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a. n is the lengths of joint angles vectors
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Solution: Usage of hybrid cost
function
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Method

Optimisation

Inverse Optimization

Retained hybrid cost functions
[Berret, 2011]

J =
7∑

i=1

αiCi (2)

Objective

Find optimal values of αi that lead to
human joint trajectories

Processus

Bi-level optimisation

Minimization of J cost-function

Minimisation of RMSE between
measured and estimated joint angles
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Results

Results for a typical subject [Sylla, 2014b]

RMSE:
6.8 deg   

-75 

Jo
in

t a
ng

le
s [

de
g]

 

 

 

θ1 θ2 θ3 θ4 

0 2.5 0 2.5 0 2.5 0 

RMSE: 
4.1 deg 

 RMSE:
1.0 deg 

RMSE: 
4.4 deg   

0 RMSE: 
6.8 deg 

0.3 0.4 0.2 0.3 

45.1 
53.7 

C
os

t f
un

ct
io

ns
 c

on
tri

bu
tio

ns
 [%

] 

40 

80 

C1 C2 C3 C4 C5 C6 

Trial 1 

α = [0.3 1.0 0.1 0.0 0.0 5.2 5.8]

Important contribution of energy [Alexander, 1997] and geodesic [Biess, 2006]
criteria: workers minimize their energy expenditure, task duration, and choose the
shortest path during the screwing task.
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Results

Relevance of Exoskeleton ergonomic compensation [Sylla, 2014c]
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Conclusion

Conclusion

Slight differences between joint angles show the relevance of using a hybrid cost
function in human motion planning

Criteria contributions during the movement, resulting from inverse optimization,
helps in determining optimal assistive device in terms of degrees of freedom and
command strategy to improve workers’ comfort

Results questions the control law of the exoskeleton

Future works:
Performing inverse optimization to several subjects
Analysis of the screwing movement in realistic situation with experimented workers in
factory
Development of a new control law for personalised compensation
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