
Résumé de la thèse 
 

Cette thèse propose deux contributions méthodologiques innovantes dans le domaine 
de l’optimisation topologique des structures, en s’attaquant à deux défis majeurs : 
d’une part, l’optimisation de structures non linéaires soumises à des contraintes de 
déplacement, et d’autre part, l’intégration de l’apprentissage par renforcement dans 
les processus d’optimisation, sans recours à des modèles explicites ou à des jeux de 
données préexistants. 

La première partie de la recherche porte sur le développement d’une méthode 
améliorée d’Optimisation Structurelle Évolutive Bidirectionnelle (BESO), 
spécifiquement conçue pour les structures présentant des non-linéarités géométriques 
importantes et des contraintes de déplacement. Contrairement aux approches 
traditionnelles qui s’appuient sur des matrices de raideur tangentes coûteuses à 
calculer et numériquement instables dans les cas de grandes déformations, la méthode 
proposée repose sur une formulation de la sensibilité par perturbation linéaire, plus 
stable et plus efficiente. Cette formulation est combinée à une stratégie de contrôle 
adaptatif du volume, permettant de réguler la progression de l’optimisation et d’éviter 
les oscillations excessives des déplacements. L’ensemble du processus est implémenté 
dans un environnement d’analyse par éléments finis non linéaire (notamment via 
ABAQUS), et validé par des études de cas tridimensionnelles sur des poutres en porte-
à-faux et des cylindres soumis à des charges en torsion. Les résultats obtenus 
démontrent une amélioration significative en termes de stabilité, de précision des 
topologies optimisées et de vitesse de convergence par rapport aux méthodes linéaires 
classiques. 

La deuxième contribution majeure de cette thèse est le développement d’un cadre 
d’optimisation structurelle novateur basé sur un automate cellulaire combiné à 
l’apprentissage par renforcement (RLCA). Cette méthode, appliquée ici à des 
problèmes linéaires de type élasticité isotrope, vise à explorer le potentiel de 
l’intelligence artificielle dans la génération de topologies optimales sans recourir à des 
dérivées ni à des données préalables. Le processus d’optimisation est modélisé comme 
un processus de décision de Markov (MDP), où chaque cellule (élément) de la structure 
est contrôlée par un agent qui apprend, via l’algorithme de Q-Learning, à prendre des 
décisions (conserver, ajouter ou retirer un part de cellule) en fonction de son état local 
et de la récompense obtenue. Cette approche se distingue des méthodes supervisées 
ou des modèles basés sur les sensibilités par sa capacité à apprendre de manière 
autonome et à s’adapter à de nouveaux cas sans réentraîner le modèle. 

Le RLCA a été testé sur plusieurs cas classiques d’optimisation topologique linéaire 
(dont des poutres encastrées), et comparé aux méthodes BESO et SIMP. Les résultats 
montrent que le RLCA atteint des performances similaires voire supérieures en termes 



de conformité et de complexité des formes, tout en nécessitant moins d'itération de 
calculer. De plus, la méthode présente un potentiel élevé de transfert de politique entre 
différents cas de charge ou de conditions aux limites. Enfin, nous démontrons une 
première extension en trois dimensions : un porte-à-faux en flexion 3D est optimisé en 
déployant tel quel la table Q apprise en 2D (ε = 0, sans réentraînement). Les résultats 
confirment la transférabilité interdimensionnelle de RLCA et la production de 
topologies nettes et fabricables, comparables à celles obtenues par BESO. 

Les deux méthodes présentées s’avèrent donc complémentaires : la méthode BESO 
améliorée s’attaque aux défis liés à la non-linéarité géométrique et aux contraintes de 
déplacement dans des contextes complexes, tandis que la méthode RLCA ouvre de 
nouvelles perspectives pour des designs autonomes et intelligents, en introduisant 
pour la première fois un cadre purement apprentissage par renforcement dans le 
contexte de l’optimisation topologique continue. 

En termes de contributions scientifiques, cette thèse : 

• Propose une méthode BESO robuste, capable de gérer des structures 
tridimensionnelles fortement déformées, avec contraintes de déplacement ; 
 

• Introduit un cadre d’optimisation modèle-libre basé sur le Q-Learning, sans 
recours à la dérivation analytique ni à des données labellisées ; 

 
• Valide numériquement les deux méthodes sur des cas de référence, avec 

comparaisons systématiques ; 
 

• Prouve la faisabilité de l’intégration de l’intelligence artificielle dans 
l’optimisation mécanique, tout en préservant la rigueur physique et la 
reproductibilité numérique ; 
 

• Ouvre la voie à de futures recherches sur des extensions multi-objectifs, le 
transfert de politiques, l’incorporation de contraintes de fabrication et 
l’optimisation robuste sous incertitude. 

Ainsi, cette recherche se positionne à l’intersection de la mécanique numérique et de 
l’intelligence artificielle, et jette les bases d’une nouvelle génération d’algorithmes 
hybrides pour la conception structurelle avancée, alliant précision physique, robustesse 
algorithmique et capacités d’apprentissage adaptatif. 
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